
4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

An Efficient On-Chip NI Offering Guaranteed
Services, Shared-Memory Abstraction, and

Flexible Network Configuration
Andrei Rădulescu, John Dielissen, Santiago González Pestana, Om Prakash Gangwal, Member, IEEE,

Edwin Rijpkema, Paul Wielage, and Kees Goossens

Abstract—In this paper, we present a network interface (NI) for
an on-chip network. Our NI decouples computation from com-
munication by offering a shared-memory abstraction, which is in-
dependent of the network implementation. We use a transaction-
based protocol to achieve backward compatibility with existing bus
protocols such as AXI, OCP, and DTL. Our NI has a modular
architecture, which allows flexible instantiation. It provides both
guaranteed and best-effort services via connections. These are con-
figured via NI ports using the network itself, instead of a sepa-
rate control interconnect. An example instance of this NI with four
ports has an area of 0.25 mm2 after layout in 0.13- m technology,
and runs at 500 MHz.

Index Terms—Best-effort communication, communication pro-
tocols, network interfaces, networks on chip, packet switching, per-
formance guarantees.

I. INTRODUCTION

NETWORKS-ON-CHIP (NoC) have been proposed as a
solution to the interconnect problem for highly complex

chips [1], [3]–[5], [9], [14], [20], [21], [23], [26], [28]–[30],
[35], [42]. NoCs help designing chips in several ways. They

• structure and manage wires in deep submicron technolo-
gies [4], [5], [14], [20], [29], [35].

• allow good wire utilization through sharing [9], [14], [20],
[35].

• scale better than buses [1], [21], [28], [35].
• can be energy efficient and reliable [4], [9].
• decouple computation from communication through well-

defined interfaces, enabling IP modules and interconnect
to be designed in isolation, and to be integrated and reused
more easily [4], [18], [28], [29], [35],.[39].

Networks are composed of routers, which transport the data
from one place to another, and network interfaces (NIs), which
implement the interface to the IP modules. In a previous ar-
ticle [35], we showed the tradeoffs in designing a cost-effec-
tive router combining guaranteed with best-effort traffic. In this
paper, we focus on the other NoC component, the NI.

On-chip NIs must provide a low area overhead, because the
size of IP modules attached to the NoC is relatively small. Our
NI is intended for systems-on-chip (SoC), hence, it must have
a low area. To enable the reuse of existing IP modules, we

Manuscript received March 1, 2004; revised June 9, 2004. This paper was
recommended by Guest Editor J. Figueras.

The authors are with the Philips Research Laboratories, 5656 AA Eindhoven,
The Netherlands (e-mail: andrei.radulescu@philips.com).

Digital Object Identifier 10.1109/TCAD.2004.839493

must provide a smooth transition from buses to NoCs. A shared-
memory abstraction via transactions (e.g., read, write) ensures
this. Further, we also have to provide a simple and flexible con-
figuration, preferably using the NoC itself to avoid the need for
a separate scalable control interconnect.

We achieve a low-cost implementation of the NI by im-
plementing the protocol stack in hardware, and by exploiting
on-chip characteristics (such as the absence of transmission
errors, relatively static configuration, tight synchronization) to
implement only the relevant parts of a complete ISO–OSI stack
[36]. A hardware implementation of the protocol stack provides
a much lower latency overhead compared to a software im-
plementation. Further, a hardware implementation allows both
hardware and software cores to be reused without change [7].

Our NI provides services at the transport layer in the ISO-OSI
reference model [36], because this is the first layer where of-
fered services are independent of the network implementation.
This is a key ingredient in achieving the decoupling between
computation and communication [24], [39], which allows IP
modules and interconnect to be designed independently from
each other. We provide transport-layer services by defining con-
nections (e.g., peer-to-peer or multicast) configured for specific
properties (e.g., throughput, ordering).

We offer guaranteed services (e.g., lower bounds on
throughput, and upper bounds on latency) as they are essential
for a compositional construction (design and programming) of
SoC. The reasons are that they limit the possible interactions
of IPs with the communication environment [18], [20], sepa-
rate the IP requirements and their implementation, and make
application quality of service independent of the IP and NoC
implementations.

Our NoC, called Æthereal, offers a shared-memory abstrac-
tion to the IP modules. Communication is performed using a
transaction-based protocol, where master IP modules issue re-
quest messages (e.g., read and write commands at an address,
possibly carrying data) that are executed by the addressed slave
modules, which may respond with a response message (i.e.,
status of the command execution, and possibly data) [38]. We
adopt this protocol to provide backward compatibility to ex-
isting on-chip communication protocols (e.g., AXI [2], OCP
[32], DTL [33]), and also to allow efficient implementation of
future protocols, which are better suited to NoCs.

We provide a modular NI, which can be configured at design
time. That is, the number of ports and their type (i.e., master
port, or slave port), the number of connections at each port,

0278-0070/$20.00 © 2005 IEEE

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 5

memory allocated for the queues, the level of services per port,
and the interface to the IP modules are all configurable at design
(instantiation) time using an XML description.

The NI allows flexible NoC configuration at runtime. Each
connection can be configured individually, requiring config-
urable NoC components (i.e., router and NI). However, instead
of using a separate control interconnect, which must be scalable
too, for NoC program, the NoC is used to program itself. This is
performed through configuration ports using memory-mapped
input/output (DTL-MMIO) transactions [33]. The NoC an be
configured in a distributed fashion (i.e., via multiple configura-
tion ports), or centralized (i.e., via a single port).

The paper is organized as follows. In the next section, we
briefly cover the related work on NIs. In Section III, we describe
NoC services that we implement, and the interface offered to the
IP modules. In Section IV, we present a modular NI architecture,
which is split into a kernel, providing core functionality, and a
number of shells to extend functionality, e.g., wrappers to pro-
vide an interface to existing bus protocols, such as AXI or DTL.
In Section V, we show that NoCs can be configured both in a
distributed and in a centralized way, and we present the tradeoff
between the two approaches. We then show how the NI allows
NoC configuration using the NoC itself as opposed to via a sep-
arate control interconnect. In Section VI, we demonstrate the
feasibility of our NI design through a prototype implementation
in a 0.13- m technology, and we conclude in Section VII.

II. RELATED WORK

NI design has received considerable attention for parallel
computers [10], [13], [27], [31], [40], and computer networks
[6], [8], [11], [12]. These designs are optimized for performance
(high throughput, low latency), and often consist of a dedicated
processor, and large amount of buffering. As a consequence,
their cost is too high to be applicable on chip.

On-chip interconnect interfaces have been already used for
decoupling computation from communication, allowing inter-
connect and processing cores to be designed independently and
to be reused [15], [19], [25], [43] For NoC interconnects, first,
NIs are just being designed.

Dally and Towles describe a tile-based NoC which provides
a low-level datagram protocol [14]. The interface has an input
port and an output port, each with a separate data part (256 bits)
and a control part (38 and 22 bits for input and output ports, re-
spectively). The control data includes data types, packet size,
virtual channel, and, for the input port, routing information.
Higher-level services can be layered on top of this interface.

Liang et al. present a NoC architecture in which the router
and the NI are integrated in a single block, called communica-
tion interface [28]. Communication patterns are determined at
compile time and programmed in the communication interface.
The switch in the communication interface is programmed in
every cycle based on this programming. The communication in-
terface is estimated to have an area of and to run at
350 MHz in 0.3- m technology. This results in approximately
0.50 mm in 0.13- m technology.

Bolotin et al. present an irregular mesh NoC, called QNoC
[9]. The QNoC NI offers a bus-like protocol with conventional

read and write semantics. This NI offers four service levels,
where signaling has the highest priority, followed by real time,
read/write and block transfer.

Liu et al. propose the NoC to be viewed as an interconnect
intellectual property module [29]. The NI of this NoC offers
services at the transport layer, being responsible for message
to/from packet conversion. An NI example offering a unidirec-
tional 64-bit data only interface to a CPU is presented.

Bhojwani and Mahapatra study the impact of the packetiza-
tion implementation on area, latency, complexity, and flexibility
[7]. The paper shows three packetization schemes: 1) in software
and 2) in hardware on core, and 3) in a wrapper. Software imple-
mentation results in high latencies and an increase of code size.
On-core hardware packetization has a 13 K gates area overhead
and a moderate latency: 10.8 ns. A hardware wrapper implemen-
tation has the lowest area overhead: 4 K gates, and the lowest
latency: 3.02 ns.

Other NoC proposals exist, where an NI is envisaged to pro-
vide communication services to the IP modules connected to the
NoC [21], [22], [26], [30], [42]. However, no design details are
offered yet for these NIs.

The existing NI designs address one or more of the aspects
of our NI: low cost, high-level services offering an abstraction
of the NoC, modular design, and differentiated services. How-
ever, to the best of our knowledge, our NI is the first to address
all these aspects. In addition to these, our NI also provides time
guarantees (i.e., bandwidth and latency bounds), and offers a
solution to NoC and IP modules configuration at runtime, re-
sulting in a complete NI solution.

III. NOC SERVICES

As mentioned in the previous section, the communication ser-
vices of the Æthereal NoC are defined to meet the following
goals:

• decouple computation (IP modules) from communication
(NoC);

• provide backward compatibility to existing bus protocols;
• provide support for real-time communication;
• have a low-cost implementation.

Decoupling computation from communication is a key ingre-
dient in managing the complexity of designing chips with bil-
lions of transistors, because it allows the IP modules and the
interconnect to be designed independently [24], [39]. In NoCs,
this decoupling is achieved by positioning the network services
at the transport level [5], [35] or above in the ISO–OSI refer-
ence model [36]. At the transport level, the offered services are
end to end between communicating IP modules, hiding, thus,
the network internals, such as topology, routing scheme, etc.

Backward compatibility with existing protocols, such as AXI
or DTL, is achieved by using a model based on transactions
[38]. In a transaction-based model, there are two types of IP
modules: masters and slaves (see Fig. 1). Masters initiate trans-
actions by issuing requests, which can be further split in com-
mands, and write data (corresponding to the address and write
signal groups in AXI). Examples of commands are read and
write. One or more slaves receive and execute each transaction.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

Fig. 1. Transaction model.

Fig. 2. Types of connections.

Optionally, a transaction can also include a response issued by
the slave to the master to return data or an acknowledgment of
the transaction execution (corresponding to the read data and
write response groups in AXI).

In the Æthereal NoC, all these signals are sequentialized in
request and response messages, which are supplied to the NoC,
where they are transported by means of packets. Sequentializa-
tion is performed to reduce the number of wires, increasing their
utilization, and to reduce the area for the switching elements.
Packetization is performed by the NI and is, thus, transparent to
the IP modules.

The Æthereal NoC offers its services on connections. The
reason we use connections is to allow differentiated communi-
cation services and guarantees offered to the IP modules. Con-
nections can be peer to peer (one master, one slave), multicast
(one master, multiple slaves, all slaves executing each transac-
tion, and, currently, no responses allowed to avoid merging of
messages), and narrowcast (one master, multiple slaves, a trans-
action is executed by only one slave), as shown in Fig. 2 [38].

Connections are composed of unidirectional peer-to-peer
channels (between a single master and a single slave). To each
channel, properties are attached, such as guaranteed message
delivery or not, in-order or unordered message delivery, and
with or without timing guarantees. As a result, different prop-
erties can be attached to the request and response parts of a
connection, or for different slaves within the same connection.
Connections can be opened and closed at any time. Opening

and closing of connections takes time, and is intended to be
performed at a granularity larger than individual transactions.

In Æthereal, message delivery is guaranteed by not allowing
network buffers to overflow [35], [37]. This is ensured using
credit-based flow control at the link level to avoid router buffer
overflow, and at the channel level (i.e., peer-to-peer between two
NIs) to avoid NI buffer overflow.

Message ordering is offered natively by the channel imple-
mentation. Within a channel, messages are packetized and sent
by the NI in order of their receipt from the IP. The packets in
a channel are forced on the same path in the NoC, where they
are kept in order by the routers and NIs. This choice limits the
flexibility in routing the packets (e.g., no dynamic routing is pos-
sible), however, simplifies significantly NI design and reduces
its cost, because there is no need to reorder within the NI.

Ordering guarantees are provided only within a channel. Dif-
ferent channels are treated as separate entities in the NI sched-
uler, and they may have different routes. As a result, message
reordering is possible across channels.

Support for real-time communication is achieved by pro-
viding throughput and latency guarantees. These are essential
for complex real-time streaming application (e.g., high-end TV
chips), because they considerably reduce the integration time,
and allow IP reuse.

In Æthereal, throughput and latency guarantees are imple-
mented by configuring connections as pipelined time-divi-
sion-multiplexed circuits over the network. Time multiplexing
is only possible when the network routers have a notion of
synchronicity which allows slots to be reserved consecutively
in a sequence of routers [18], [35]. This scheme has smaller
packet buffers, and, hence, has lower implementation cost
compared to alternatives, such as rate-based packet switching
[44], or deadline-based packet switching [34].

Throughput guarantees are given by the number of slots re-
served for a connection. A slot corresponds to a given band-
width: , and, therefore, reserving slots for a connection
results in a total bandwidth of . The latency bound is
given by the waiting time until the reserved slot arrives and the
number of routers data passes to reach its destination.

Protocol stacks that are used in networks to implement
different communication services, require additional cost com-
pared to buses. Protocol stacks are necessary in networks to
manage the complexity of networks, and to offer differentiated
services. The pressure to keep the protocol stack small is higher
on chip than off hip, because the size of the IP modules attached
to the NoC is relatively small. However, for NoCs, the protocol
stacks can be reduced by exploiting the on-chip characteristics
(e.g., no transmission errors,1 short wires) [38]. In the Æthereal
NoC, we optimize the performance and minimize the cost of

1In current CMOS technologies (e.g., 0.13 �m), the mean time between
failure is very large. Moreover, when NoCs are used, e.g., in mesh, wires are
structured, and their properties can be controlled such that the probability of
transmission errors is nearly 0. Considering these, it is safe to assume there are
no transmission errors in an NoC. In future technologies, the error rate is going
to increase, and, consequently, additional support for error handling, such as
error detection, error correction, and retransmission after error detection, might
become necessary. This is a possible extension to NoCs, typically done at the
data link layer, which has little impact on the higher layers, i.e., network and
transport.

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 7

Fig. 3. NI kernel and shells.

the protocol stack by implementing it in hardware, rather than
in software. We support this claim in Section VI.

More on the services offered by the Æthereal NoC can be
found in [38].

IV. NI ARCHITECTURE

The NI is the NoC component that implements the services
described in the previous sections, and provides the conver-
sion of the packet-based communication of the NoC to the
higher-level protocol that IP modules use. We split the design
of the NI in two parts (see Fig. 3):

1) the NI kernel, which implements the channels, packetizes
messages and schedules them to the routers, implements
the end-to-end flow control and clock domain crossings;

2) the NI shells, which implement the connections (e.g., nar-
rowcast, multicast), transaction ordering for connections,
and other higher-level issues specific to the protocol of-
fered to the IP.

The reasons for this split in the design are

• the reuse of the NI kernel across various NI flavors.
• easy migration to various communication protocols by im-

plementing a simple shell.
• cost optimizations by omitting the shells that are not

needed.
• the option to automatically generate NI instances by as-

sembling the kernel and various existing shells.

A. NI Kernel Architecture

The NI kernel (see Fig. 4) receives and delivers messages
from the IP modules. These messages contain the sequentialized
data provided by the IP modules via their protocol. The message
structure may vary depending on the protocol used by the IP
module. However, the message structure is irrelevant for the NI
kernel, as it just sees messages as pieces of data to be transported
over the NoC.

NI Ports: The NI kernel communicates with the NI shells via
ports. Typically, there are multiple ports per NI, as an IP module

Fig. 4. NI kernel ports.

does not transfer enough data to fill up the NoC link capacity (16
Gb/s in our current prototype).

At each port, peer-to-peer connections can be configured,
their maximum number being selected at NI instantiation time.
A port can have multiple connections to allow differentiated
traffic classes, in which case there are also conn signals to se-
lect on which connection a message is supplied or consumed.
In Fig. 4, we show an example NI with two ports, in which the
first port can have up to two connections, and the second port
can only have one connection.

Connection Implementation: A peer-to-peer connection
consists of two channels: one request channel and one response
channel (see Fig. 5). The reason for this choice is to come close
to existing on-chip communication protocols (AXI, OCP, or
DTL), and, consequently, have low-cost shell implementations.
Alternatively, unidirectional connections (i.e., consisting of a
single channel) are also possible, but we decided not to use
them, because the communication model they offer (message
passing) is not common practice for on-chip designs.

Each channel uses two queues for storing messages, one in
each of the two NI kernels. As there are two channels per con-
nection, in each NI kernel, there are two message queues for
each connection (one source queue, for messages going to the
NoC, and one destination queue, for messages coming from the
NoC). Their size is also selected at the NI instantiation time.
In our NI, queues are implemented using custom-made hard-
ware first-in first-outs (FIFOs), and are also used to provide the
clock-domain crossing between the network and the IP mod-
ules. Each NI-kernel port can, therefore, have a different clock
frequency.

Each channel is configured individually. In a first prototype of
the Æthereal NI (see Fig. 8), we can configure if a channel pro-
vides time guarantees (GT) or not (we call this best effort, BE),
reserve slots for GT connections (in the Slot Table Unit STU),
configure the end-to-end flow control (in the space counter),
and the routing information (in the conn table). For details on
how these channel properties are configured, see Section V.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

Fig. 5. Connection implementation.

Fig. 6. Average link bandwidth.

End-to-end flow control ensures that no data is sent unless
there is enough space in the destination buffer to accommodate
it. The alternative of not using end-to-end flow control would
lead to either (1) dropping data at the destination NI in case
the buffer is full, which would add considerable complexity and
cost for data retransmission, or (2) letting the data chain in the
network starting at the NI’s full buffer, which can lead to NoC
congestion, and deadlock.

We implement end-to-end flow control using credits [41]. As
shown in Fig. 5, for each channel, there is a counter (space)
tracking the empty buffer space of the remote destination queue.
This counter is initialized with the remote buffer size. When data
is sent from the source queue, the counter is decremented. When
data is consumed by the IP module at the other side, credits are
produced in a counter in the remote NI (credit) to indicate
that more empty space is available. These credits are sent to the
producer of data (dashed line in Fig. 5) to be added to its space
counter.

In the Æthereal prototype, we piggyback credits in the
header of the packets for the data in the other direction to
improve NoC efficiency. As shown in Fig. 6, which plots the
average link bandwidth resulted when implementing a mpeg2
video encoder/decoder2 using our NoC interconnect, overhead
bandwidth can be reduced with up to 20% by piggybacking

2We modeled an mpeg2 encoder/decoder using main profile (4:2:0 chroma
sampling) at main level (720 � 480 resolution with 15 Mb/s), supporting in-
terlaced video up to 30 frames per second. This application consists of 15 pro-
cessing cores and an external SDRAM, and has 21 streams (with an aggregated
bandwidth of 3 GB/s), all configured to have guaranteed throughput.

Fig. 7. Æthereal packet format.

credits on the data packets. As the burst size grows, the curves
converge (the relative overhead introduced by credit packets
decreases). The reason is that the larger the burst size is, the
largest amount of credits are reported in a credit packet. Conse-
quently, the number of credit packets (i.e., overhead introduced
by credits) decreases. The drawback of increasing burst sizes is
that buffers need to increase to accomodate the larger bursts.

As shown in Fig. 7, besides the routing information (path and
queue identifier), we use 5 bits (27 to 31) in the packet header
for piggybacking the credits. Thus, the maximum amount of
credits that can be sent at a time is currently . Note
that at most space data items can be transmitted before credits
must be received. We call the minimum between the data items
in the queue and the value in the counter space, the sendable
data. Whenever a queue contains sendable data, the request
generator issues a signal specifying that that queue can be
scheduled.

From the source queues, data is packetized, and sent to the
NoC via the router port. A packet header consists of the routing
information (in the current prototype, this is the path from the
source NI to the destination NI as a sequence of router ports3),
remote queue id (i.e., the queue of the remote NI in which the
data will be stored), and piggybacked credits. The packetization
is controlled by the flit ctrl module, which indicates if
the produced word is a header. The path and the remote queue
id are taken from the conn table, and the credits to be reported
are taken from credit table).

NI Scheduler: We implement a scheduler to arbitrate be-
tween the channels that have data to be transmitted (see Fig. 8).
The scheduler is split in two.

1) The GT scheduler checks if the current slot is re-
served for a GT channel. If the current slot is reserved, and
there is sendable data in the queue for which the reserva-
tion has been made, that queue is scheduled.

3We opt for source routing because it does not require routing tables in the
routers, and, thus, routing table configuration. Source routing also allows router
design to be independent of the NoC topology.

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 9

Fig. 8. NI kernel architecture.

Fig. 9. Control data associated with a flit.

2) The BE scheduler uses round-robin arbitration to se-
lect between the BE queues which have sendable data, but
only when there is no queue scheduled in the GT sched-
uler.

In this way, our NoC provides time guarantees (i.e., bandwidth
and latency), while at the same time allows the rest of the re-
maining NoC capacity to be used by best-effort traffic.

NI Kernel Optimizations: To increase the NoC efficiency, it
is preferable to send longer packets. To achieve this, we use
the following two optimizations. First, the decision on when
the packet is finished is taken as late as possible (by one of
the scheduler modules). This allows newly arrived data to
be attached to an ongoing packet, increasing its length, and op-
timizing NoC utilization. The packet end is marked using the
already existing two control bits used by the routers to manage
flits. In the current implementation, the link width is 32, and flits
consist of three words (see Fig. 9) [35]. Consequently, there are
three control values sent consecutively in a flit. The first spec-
ifies the flit type (i.e., ,4 ,), the
second gives the number of words other than a packet header in
the flit, and the third uses only one bit to specify if the current
flit is the last of a packet (1), or not (0).

4When an empty flit is sent, only the two control lines are set to 0. Data lines
do not toggle, and, therefore, minimum power is consumed.

Second, we implement a configurable threshold mechanism,
which skips a channel as long as the sendable data is below
the threshold (thresholds are stored in the trshld table, see
Fig. 8). This is applicable to both BE and GT channels. To pre-
vent starvation at user/application level (e.g., due to write data
being buffered indefinitely on which the IP module waits for an
acknowledge), we also provide a flush signal for each channel
(and a bit in the message header) to temporarily override the
threshold. When the flush signal is high for a cycle, a snapshot
of its source queue filling is taken, and as long as the words in the
queue at the time of flushing have not been sent, the threshold
for that queue is bypassed.

The flush signal is controlled by the IP modules. This is
a standard technique in modern communication protocols,
such as DTL (which has a similar flush signal) or AXI (which
forces transmission of potentially buffered write data with
an unbuffered write command). For read commands, no such
flush-equivalent exists, and, therefore, the NI shells always set
the flush high for read commands and read data.

As shown in Fig. 10, using thresholds increases network uti-
lization (e.g., 20% for a threshold of 16 and a burst size of 16),
especially for small burst sizes, because it forces longer packets,
and, hence, a lower number of packet headers. On the other
hand, waiting for data to accumulate to create longer packets
increases the latency (see Fig. 11), and longer packets require
larger buffers (see Fig. 12). Consequently, using data thresholds
involves a tradeoff between network utilization on one hand, and
latency/cost on the other hand, and should be used only when
necessary.

A similar threshold is set for credit transmission (also in the
trshld in Fig. 8). The reason is that, when there is no data
on which the credits can be piggybacked, the credits are sent as
empty packets, thus, consuming extra bandwidth. To minimize
the bandwidth consumed by credits, a credit threshold is set,
which allows credits to be transmitted only when their sum is

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

Fig. 10. Average link utilization relative to data threshold.

Fig. 11. Average latency relative to data threshold.

Fig. 12. Average NI buffer utilization relative to data threshold.

above the threshold. Similar to the data case, credits can also be
flushed to prevent possible starvation.

As for the data thresholds, credit thresholds increase NoC
utilization, especially for small burst sizes, because by forcing
credit accumulation, less empty packets carrying only credits
are generated (see Fig. 13, where data thresholds are set to
0). However, as opposed to the data thresholds, setting credit

Fig. 13. Average link utilization relative to flow-control threshold.

Fig. 14. Average latency relative to flow-control threshold.

thresholds has little impact on the latency and buffer require-
ments (see Figs. 14 and 15). The reason is that the application
has a periodic bursty behavior, and the time needed to report
credits back (in one or multiple packets) is lower than the time
between bursts. Consequently, credits are always reported in
time, thus preventing data being buffered, and not affecting the
latency.

As credits are piggybacked on packets, a queue becomes
eligible for scheduling (i.e., request generator issues a
signal for that queue to GT scheduler and BE sched-
uler) when either the amount of sendable data is above its
data threshold, or when the amount of credits is above its
credit threshold. However, once a queue is selected, a packet
containing the largest possible amount of credits and data
will be produced. Note the amount of credits is limited by
the implementation to the given number of bits in the packet
header, and BE packets have a maximum length to avoid links
being used exclusively by a single packet/channel, which could
cause NoC congestion and/or starvation.

For the incoming packets, the NI inspects the header, adds the
credits to the counter space, and stores the data (without the
header) in the queue specified by the queue id field in the packet
header. The data is then ready for consumption by the shells at
the NI-kernel ports.

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 11

Fig. 15. Average NI buffer utilization relative to flow-control threshold.

Fig. 16. Master shell.

Fig. 17. Slave shell.

B. NI Shell Architectures

With the NI kernel described in the previous section, peer-to-
peer connections (i.e., between one master and one slave) can be
supported directly. These types of connections are useful in sys-
tems involving chains of modules communicating peer to peer
with one another (e.g., video pixel processing [16], [19]).

For more complex types of connections, such as narrowcast
or multicast, and to provide conversions to other protocols, we
add shells around the NI kernel. As an example, in Fig. 3, we
show a NI with two DTL and two AXI ports. All ports provide
peer-to-peer connections. In addition to this, the two DTL ports
provide narrowcast connections, and one DTL and one AXI port
provide multicast connections. Note that these shells add spe-
cific functionality, and can be plugged in or left out at instanti-
ation time, according to the requirements. NoC instantiation is
simple, as we use an XML description to automatically generate
the VHDL code for the complete NoC, including the NI, router
and the NoC topology [17].

Master/Slave Shells Architecture: In Figs. 16 and 17, we
show a master and slave shells that implement a simplified

Fig. 18. AXI message format examples.

version of a protocol such as DTL or AXI. Support for different
protocols is possible due to the fact that NI kernel is protocol
agnostic. The basic functionality of such shells is to (de)sequen-
tialize commands and their flags, addresses, and write data in
request messages, and to (de)sequentialize messages into read
data, and write responses. Master shells sequentialize request
messages and desequentialize response messages, while slave
shells sequentialize response messages and desequentialize
request messages.

In Fig. 18, we show an example of 32-bit message structures
for the AXI protocol resulting after sequentialization. These
messages are passed from NI shells to the NI kernel. For the
request message, the command (AWRITE) and all its flags are
included in the first word of the message, the address (ADDR)
is set in the second word, and the write data (WDATA), in the
case of a write command, are appended at the end. There is one
limitation in this encoding compared to the original AXI pro-
tocol: the strobe is identical for all transferred write words in a
burst, while in AXI each write word have an individual strobe.
If individual strobes for each word are required, this can be im-
plemented either by extending the link width from e.g., 32 to 36
bits to also accommodate the strobes, or by adding extra strobe
words in the message formats. This functionality leads, how-
ever, to increased cost and/or overhead.

For the response message, there is a bit (R/B) specifying if
the message corresponds to a read data or to a write response.
R/BRESP[1:0] indicates if the transaction is successful or not.
In the case of a read data response, _ALEN[3:0] is also copied
in the response message by the slave AXI NI shell to reduce
the NI buffering cost. Additionally, if multiple connections are
implemented at the NI port, a connection id can be generated
based on the transaction’s address or thread id.

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

Fig. 19. Narrowcast shell.

Narrowcast Shell Architecture: In Fig. 19, we show an ex-
ample of a narrowcast shell. Narrowcast connections are con-
nections between one master and several slaves, where each
transaction is executed by a single slave selected based on the
address provided in the transaction [38]. Narrowcast connec-
tions provide a simple, low-cost solution for a single shared ad-
dress space mapped on multiple memories. It implements the
splitting/merging of data going to/coming from these memories.

We implement the narrowcast connection as a collection of
peer-to-peer connections, one for each master-slave pair. Within
a narrowcast connection, the slave for which the transaction is
destined is selected based on the address (Conn block). The
address range assigned to each slave is run-time configurable
in the narrowcast module. In-order delivery per slave of re-
quest messages is provided natively by the Æthereal NoC for the
peer-to-peer connections. To provide in-order response delivery,
the narrowcast shell keeps a history of connection identifiers of
the transactions with responses (e.g., reads, and acknowledged
writes), and the length of these responses. That allows the re-
sponses being received in order from each of the slaves to be
interleaved correctly before being delivered to the master.

Multichannel Shell Architecture: When a slave using a con-
nectionless protocol (e.g., DTL) is connected to an NI port sup-
porting multiple connections, a multiconnection shell must be
included to arbitrate between the connections. A multiconnec-
tion shell (see Fig. 20) includes a scheduler to select connections
from which request messages are consumed, based for example,
on their filling. As for the narrowcast, the multiconnection shell
has a connection id history for mapping back the responses from
the slave to their corresponding connections.

V. NETWORK CONFIGURATION

Before the Æthereal NoC can be used by an application, it
must be configured. NoC (re)configuration means opening and
closing connections in the system. Connections are set up de-
pending on the application or the mode the system is running.
Therefore, we must be able to open and close connections while
the system is running. (Re)configuration can be partial or total
(some or all connections are opened/closed, respectively).

Opening/closing connections implies allocating/deallocating
resources for communication. For example, a connection re-
quires buffering resources, it is associated an identifier, it is con-

Fig. 20. Multiconnection shell.

figured a memory map, and it may possibly be allocated a pri-
ority and/or a portion of the bandwidth. In our NoC, these re-
sources are allocated in the network components by writing reg-
isters via a control port using a standard protocol, such as AXI
or DTL-MMIO.

Resource allocation requires arbitration for the case in which
two connections request the same resources. This arbitration
can be performed either centralized or distributed. In the cen-
tralized case, there is only one resource manager, which opens
and closes all connections. In this case, the cost of managing
resources is lower, and can produce better results. However, a
centralized resource manager does not scale and cannot be used
for large NoCs. In the distributed case, there are multiple re-
source managers distributed in the NoC, which arbitrate locally
for their resources. This is a scalable resource management so-
lution. However, the associated cost is higher.

In the current prototype of the Æthereal NoC, we opt for cen-
tralized configuration, because it is able to satisfy the needs of
a small NoC (around ten routers), and has a simpler design and
lower cost. More specifically, when a centralized configuration
scheme is used, our routers do not require any configuration
(they are stateless and identical). The reasons are as follows.

1) We use source routing, and, thus, the routing information
is present in the packet headers.

2) In our slot allocation scheme, it is enough to reserve slots
in the source NI for a given path to guarantee the band-
width for that path.

In this way, router design is simplified, leading to an approx-
imately 30% lower-cost router, at the price of introducing
headers for the guaranteed throughput traffic too.

In general, opening a connection between two NIs requires
setting up two channels (one request channel and one response
channel). For each channel, only the source NI needs to be con-
figured. Consequently, opening a connection between two NIs
results in configuring these two NIs.

Setting up one channel consists of two parts:

1) finding the free slots and selecting those to be allocated to
the channel;

2) writing the registers of the channel in the source NI.

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 13

Fig. 21. NI configuration.

Finding and selecting slots is performed traversing the slot ta-
bles of each link along the path from the source NI to the desti-
nation NI, and selecting the slots required to accommodate the
required bandwidth. In the case not enough free slots are avail-
able, an error is returned to the programmer.

Slot finding and selection is proportional to the length of the
path and the slot table size. We implemented a software pro-
totype centralized implementation for an ARM, which takes

on an ARM running at 200
MHz, where is the channel path length, and
is the slot table size. For example, computing the slot allocation
for a channel with a path of length 4 and a 128 slot table takes
240 ns.

Writing the registers of a channel implies executing write
transactions over the NoC. This is again proportional to the
NoC speed, NoC size (i.e., the distance between the NI where
the configuration is performed and the NI to be configured),
and the number of registers to be written (three for normal
channel configuration, two in case the channel is attached
to a narrowcast shell, and for slot reservation).
If individual write transactions are used for writing regis-
ters, the time take to configure a channel is approximately

,
where is the number of registers to be written,

is the number of words in a flit (three in Æthereal
case), is the channel path length, and is the
frequency at which the NoC runs (500 MHz for Æthereal). For
a path of length 4, part of a narrowcast connection, for which
six consecutive slots have been reserved (resulting in a reserved
bandwidth of 90 MB/s), the configuration time is 90 ns.

A. NI Configuration

NIs are configured via a configuration port (CNIP), which
offers a memory-mapped view on all control registers in the NIs.
This means that the registers in the NI are readable and writable
by any master using standard read and write transactions.

Configuration is performed using the NoC itself (i.e., there
is no separate control interconnect needed for NoC configura-
tion). Consequently, the CNIPs are connected to the NoC like
any other slave (see CNIP at NI2 in Fig. 21). At the config-
uration module Cfg’s NI, we introduce a configuration shell
(Config Shell), which, based on the address configures the
local NI (NI1), or sends configuration messages via the NoC to
other NIs.

Connections are set up by writing the proper values in NI reg-
isters. To configure a connection between two modules (e.g.,
from master B and slave A in Fig. 21), the NIs to which the mod-
ules are attached must be configured. These NIs are configured
either directly (e.g., NI1 via CNIP), or by using a configuration
connection (e.g., NI2 via the connection Cfg NI2).

As NoC configuration is quite elaborate, and is susceptible to
introducing programming errors, we have also implemented a
high-level API for NoC configuration. This API provides prim-
itives for transparently opening and closing NoC connections.
Besides simplifying the NoC programming, this API allows the
configuration code to be independent of the NoC implementa-
tion.

VI. IMPLEMENTATION

In the previous section, we described a prototype of a config-
urable NI architecture. In this section, we discuss the area and
speed figures for the NI components: NI kernel, narrowcast,
multichannel and configuration shells, and master and slave
shells for a simplified version of DTL.

A. NI Area

The Æthereal NI is modular and can be configured at design
time. That is, the number of ports and their type (i.e., configura-
tion port, master port, or slave port), the number of channels at
each port, memory allocated for the queues, the level of services
per port, and the interface to the IP modules are all configurable
at design (instantiation) time.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

Fig. 22. Example of topology description.

We use an XML description to generate the RTL-VHDL code
for instances of our NoC, where the configuration of the NIs and
routers, as well as their interconnect is specified. The resulting
VHDL code is compliant with the Philips internal design flow.
In Fig. 22, we show part of such an XML description, which
specifies one NI instance. This instance has a slot table with
eight slots, and four DTL ports, two master ports, and two slave
ports (listed as MasterNIP and SlaveNIP entries in the XML
description). For each of these ports, the number of channels
that can be configured is specified in the channels attribute: 1, 1,
2, and 4, respectively. For each of these channels, the input and
output queue depths are specified by the “iqdpth” and “oqdpth”
attributes, respectively.

We have synthesized a NI kernel with this description. The
queues are area-efficient custom-made hardware FIFOs. We use
these FIFOs instead of RAMs, because we need simultaneous
access at all NI ports (possibly running at different speeds) as
well as simultaneous read and write access for incoming and
outgoing packets, which cannot be offered with a single RAM.
Moreover, for the small queues needed in the NI, multiple
RAMs have a too large area overhead. Finally, the hardware
FIFOs implement the clock domain boundary allowing each
NI port to run at a different clock frequency. The router side of
the NI kernel runs at a frequency of 500 MHz, which matches
our prototype router frequency [35], and delivers a bandwidth
toward the router of 16 Gb/s in each direction. The synthesized
area for this NI-kernel instance is 0.136 mm in a 0.13- m
technology.

Narrowcast and multiconnection shells have an area of 0.004
and 0.007 mm , corresponding to 3% and 5% of the NI kernel
area. The DTL shells are very small, 0.005 and 0.002 mm for
the master and slave ports, corresponding to 3.5% and 1.5% of
the NI kernel area, respectively. (This is also due to the fact that
not all of the DTL functionality has been implemented). The
configuration shell, which provides a simplified DTL interface
to configure the NoC, has an area of 0.01 mm .

Summing up, the total area of an NI is

where is the kernel area,
is the area of the slave shell used to configure the NI,

, , ,
are the number of masters, the number of

slaves, the number of masters with multiple connections and
the number of slaves with multiple connections, respectively,

Fig. 23. Six-port NI layout.

and , , ,
are the master shell, slave shell, narrowcast

shell, and multichannel shell areas, respectively.
For the above example, NI with four ports, one for configura-

tion (one channel to which the configuration shell is attached),
two masters (one offering narrowcast with two channels), and
one slave (multichannel with four channels), the total area is

mm .
The layout of the NI instance described above, which has an

area of 0.25 in a 0.13- m technology. The increase in area com-
pared to the synthesized area is due to the utilization (70%), and
the power ring (not normally needed when the NI is part of a
larger design).

In Figs. 23 and 24 we show a detailed view of the area con-
sumption of different parts of the NI. The figures show a NI
with three single-connection master ports, four single-connec-
tion slave ports of which one is used for NI configuration, where
all queues are eight words deep. One can note that for this NI in-
stance, a large part of the area is consumed by the FIFOs (27%).
Master and slave shells take 26% of the NI area. The tables for
channel configuration (i.e., conn, be/gt, trshld, space and credit)
occupy 19% of the NI area. The BE and GT schedulers oc-
cupy 6.5% of the NI area. The rest of 21.5% is consumed by
other logic, such as packetization/depacketization, multiplexing
of data, or credit management.

If the NI has only single-connection ports, its area is approxi-
mately proportional to the number of ports. The nonproportional
part consists of the master and slave shells, which have different
cost, and the area in misc. In Fig. 25, we show the area of the
NI, when we vary the number of master and slave single-con-
nection ports.

B. NI Latency

The latency introduced by our current NI is two cycles in
the DTL master shell (due to sequentialization, as part of pack-
etization), 0 to 2 in the narrowcast and multicast shells (de-

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 15

Fig. 24. Six-port NI area details.

Fig. 25. NI area.

pending on the NI instance), and between 1 and three cycles
in the NI kernels (as data needs to be aligned to a three word
flit boundary), and two clock cycles for clock domain crossing.
Additional delay is caused by the arbitration, but we do not in-
clude this in the NI latency, as it needs to be performed anyway
(also in the case of a bus, arbitration is performed).

The resulting latency overhead introduced by our NI is
between four and ten cycles, which is pipelined to maximize
throughput. The latency overhead of a software implementa-
tion of the protocol is much larger (e.g., 47 instructions for
packetization only [7]).

A second advantage of a hardware implementation is that it
allows both legacy software and hardware task implementations
to be used without change. For example, a legacy DTL or AXI
module can be connected directly to a network as it has been
connected to a bus. However, if parts of the protocol stack are
implemented in software (e.g., ordering or packetization), a pro-
grammable module (e.g., CPU, FPGA) would need to be at-
tached to the NI to execute the software protocol parts. If no
such CPU exists, the legacy modules could not be used, or would
need to be changed to implement the missing parts (e.g., produce
data in a packetized format directly if packetization is done in
software).

VII. CONCLUSION

In this paper, we describe an NI architecture which offers
high-level services at a low cost. Our NI provides a shared-

memory abstraction, where communication is performed using
read/write transactions. We offer, via connections, high-level
services, such as transaction ordering, throughput and latency
guarantees, and end-to-end flow control. These connections are
configurable at runtime via a memory-mapped configuration
port. We use the network to configure itself as opposed to using
a separate control interconnect for network configuration.

Our NI has a modular design, composed of a kernel and
several shells. The NI kernel provides the basic functionality,
including arbitration between channels, transaction ordering,
end-to-end flow control, packetization, and a link protocol with
the router. Shells implement: 1) additional functionality, such
as multicast and narrowcast connections and 2) adapters to
existing protocols, such as AXI or DTL. All these shells can
be plugged in or left out at design time according to the needs.
This is done using an XML description of the NoC, which is
used to automatically generate the RTL–VHDL code for the
NoC, including the NIs, routers and the network topology.

We show an instance of our NI, which shows that the cost of
implementing our protocol stack in hardware is small (0.25 mm
after layout in a 0.13- m technology, running at 500 MHz). Our
hardware protocol stack implementation provides a very low
protocol overhead of 4 to 6 cycles, which is much lower than
a software stack implementation.

In conclusion, we provide an efficient NI offering a shared-
memory abstraction, high-level services (including guarantees),
which allows runtime network configuration using the network
itself.

REFERENCES

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Ze-
ferino, “SPIN: A scalable, packet switched, on-chip micro-network,” in
Proc. Design Automation Test Eur., 2003.

[2] ARM, AMBA AXI Protocol Specification, Mar. 2004.
[3] N. Banerjee, P. Vellanki, and K. S. Chatha, “A power and performance

model for networks-on-chip architectures,” in Proc. Design Automation
Test Eur., Feb. 2004.

[4] L. Benini and G. De Micheli, “Powering networks on chips,” in Proc.
ISSS, 2001.

[5] , “Networks on chips: a new SoC paradigm,” IEEE Comput., vol.
35, no. 1, pp. 70–80, Jan. 2002.

[6] R. A. F. Bhoedjang, T. Rühl, and H. Bal, “User-level network interface
protocols,” IEEE Comput., vol. 31, no. 11, pp. 53–59, Nov. 1998.

[7] P. Bhojwani and R. Mahapatra, “Interfacing cores with on-chip packet-
switched networks,” in Proc. VLSI Design, 2003.

[8] G. Blair, A. Campbell, G. Coulson, F. Garcia, D. Hutchison, A. Scott,
and D. Shepherd, “A network interface unit to support continuous
media,” IEEE J. Select. Areas Commun., vol. 11, no. 2, 1993.

[9] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS archi-
tecture and design process for network on chip,” J. Syst. Architec., vol.
50, pp. 105–128, Jan. 2004.

[10] G. Buzzard, D. Jacobson, S. Marovich, and J. Wilkes, “Hamlyn: A
high-performance network interface with sender-based memory man-
agement,” in Proc. Hot Interconnects, 1995.

[11] T. Callahan and S. C. Goldstein, “NIFDY: a low overhead, high
throughput network interface,” in Proc. ISCA, 1995.

[12] A. Chien, M. Hill, and S. Mukherjee, “Design challenges for high-per-
formance network interfaces,” IEEE Comput., vol. 31, no. 11, pp. 42–44,
Nov. 1998.

[13] D. J. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Francisco, CA: Morgan Kauf-
mann, 1999.

16 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 1, JANUARY 2005

[14] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. Design Automation Conf., 2001.

[15] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: a multiprocessor SOC
for advanced set-top box and digital TV systems,” IEEE Des. Test
Comput., vol. 18, no. 5, pp. 21–31, <<MONTH?>> 2001.

[16] O. P. Gangwal, J. Janssen, S. Rathnam, E. Bellers, and M. Duranton,
“Understanding video pixel processing applications for flexible imple-
mentations,” in Proc. Euromicro DSD, 2003.

[17] S. G. Pestana, E. Rijpkema, A. Rădulescu, K. Goossens, and O. P.
Gangwal, “Cost-performance trade-offs in networks on chip: a simula-
tion based approach,” in Proc. Design Automation Test Eur., Feb. 2004.

[18] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A.
Rădulescu, E. Rijpkema, E. Waterlander, and P. Wielage, “Guaran-
teeing the quality of services in networks on chip,” in Networks on
Chip, J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Eds. Norwell,
MA: Kluwer, 2003, ch. 4, pp. 61–82.

[19] K. Goossens, O. P. Gangwal, J. Röver, and A. Niranjan, “Interconnect
and memory organization in SOCs for advanced set-top boxes and
TV—evolution, analysis, and trends,” in Design for Advanced SoC and
NoC, J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Eds. Norwell,
MA: Kluwer, 2004, ch. 15, pp. 399–423.

[20] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, “Networks
on silicon: combining best-effort and guaranteed services,” in Proc. De-
sign Automation Test Eur., 2002.

[21] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in Proc. DATE, 2000.

[22] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “XpipesCompiler:
a tool for instantiating application specific networks on chip,” in Proc.
Design Automation Test Eur., 2004.

[23] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture for net-
working systems on chip,” IEEE Micro, vol. 22, no. 5, 2002.

[24] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangio-
vanni-Vincentelli, “System-level design: orthogonalization of concerns
and platform-based design,” IEEE Trans. Computer-Aided Design In-
tegr. Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[25] P. Klapproth, “General architectural concepts for IP core re-use,” in
Proc. ASP-DAC, 2002.

[26] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg,
J. Tiensyrjä, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. ISVLSI, 2002.

[27] W. S. Lee, W. J. Dally, S. W. Keckler, N. P. Carter, and A. Chang, “An
efficient protected message interface,” IEEE Comput., vol. 31, no. 11,
pp. 69–74, Nov. 1998.

[28] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A scalable, single-
chip communications architecture,” in Proc. PACT, 2000.

[29] J. Liu, L.-R. Zheng, and H. Tenhunen, “Interconnect intellectual prop-
erty for network-on-chip (NoC),” J. Syst. Architec., vol. 50, no. 1, pp.
65–79, 2004.

[30] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within
the Nostrum network on chip,” in Proc. Design Automation Test Eur.,
Feb. 2004.

[31] S. S. Mukherjee and M. D. Hill, “A Survey of User-Level Network In-
terfaces for System Area Networks,” Univ. Wisconsin, Madison, Tech.
Rep. 1340, 1997.

[32] OCP International Partnership, Open Core Protocol Specification. 2.0
Release Candidate, 2003.

[33] Philips Semiconductors, Device Transaction Level (DTL) Protocol
Specification. Version 2.2, Jul. 2002.

[34] J. Rexford, “Tailoring router architectures to performance requirements
in cut-through networks,” PhD dissertation, Ann Arbor, 1999.

[35] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meer-
bergen, P. Wielage, and E. Waterlander, “Trade offs in the design of
a router with both guaranteed and best-effort services for networks on
chip,” in Proc. Design Automation Test Eur., 2003.

[36] M. T. Rose, The Open Book: A Practical Perspective on OSI. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

[37] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage,
“An efficient on-chip network interface offering guaranteed services,
shared-memory abstraction, and flexible network programming,” in
Proc. Design Automation Test Eur., 2004.

[38] A. Rădulescu and K. Goossens, “Communication services for networks
on chip,” in Domain-Specific Processors: Systems, Architectures, Mod-
eling, and Simulation, S. Bhattacharyya, E. Deprettere, and J. Teich,
Eds. New York: Marcel Dekker, 2004, ch. 10, pp. 193–213.

[39] M. Sgroi, M. Sheets, K. Keutzer, S. Malik, J. Rabaey, and A. Sangio-
vanni-Vincentelli, “Addressing the system-on-a-chip interconnect woes
through communication-based design,” in Proc. Design Automation
Conf., 2001.

[40] P. Steenkiste, “A high-speed network interface for distributed-memory
systems: architecture and applications,” ACM Trans. Comput. Syst., vol.
15, no. 1, pp. 75–109, 1997.

[41] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

[42] D. Wiklund and D. Liu, “SoCBUS: Switched network on chip for hard
real time embedded systems,” in Proc. IPDPS, 2003.

[43] D. Wingard, “Socket-based design using decoupled interconnects,” in
Interconnect-Centric Design for Advanced SoC and NoC, J. Nurmi, H.
Tenhunen, J. Isoaho, and A. Jantsch, Eds. Norwell, MA: Kluwer, 2004.

[44] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

Andrei Rădulescu received the M.Sc. degree in computer science from the
Polytechnica University of Bucharest, Bucharest, Romania, in 1995 and the
Ph.D. degree in computer engineering from the Delft University of Technology,
Delft, The Netherlands, in 2001.

Since 2001, he has been with Philips Research, Eindhoven, The Netherlands,
working on on-chip and off-chip networks, quality of service, protocols, re-
source mapping and scheduling, and distributed systems.

John Dielissen received the M.Sc. degree with honors in electrical engineering
from the Eindhoven University of Technology, Eindhoven, The Netherlands, in
2000.

He is a Research Scientist with Philips Research Laboratories, Eindhoven,
The Netherlands. His research interests include on-chip communication in large
digital system chips, with an emphasis on networks on chip.

Santiago González Pestana received the MSc degree in information tech-
nology from Tampere University of Technology, Finland, in 2001 and the
M.Sc. degree in telecommunication engineering from Las Palmas de Gran
Canaria University, Spain, in 2002.

Since 2002, he has been granted with a Marie Curie Fellowship at Philips
Research, Eindhoven, The Netherlands. His research interests include net-
works-on-chip, network benchmarking, and resource mapping and scheduling.

Om Prakash Gangwal (A’01–M’01) received the M.Tech. degree in VLSI de-
sign tools and technology from the Indian Institute of Technology, Delhi, India.

He is a Senior Scientist with Philips Research Laboratories, Eindhoven,
The Netherlands. His research interests include system-level design, em-
bedded-system architectures, video signal processing, networks on chip and
communication architectures for SoCs.

RĂDULESCU et al.: EFFICIENT ON-CHIP NETWORK INTERFACE 17

Edwin Rijpkema received the M.Sc. degree in electrical engineering from the
Delft University of Technology, Delft, The Netherlands, in 1995 and the Ph.D.
degree in computer science from Leiden University.

Since 2002 he has been a Senior Scientist at Philips Research Laboratories,
Eindhoven, The Netherlands. His research interests include digital signal pro-
cessing and networks-on-chip.

Paul Wielage received the M.Sc. degree (summa cum laude) in electrical en-
gineering from the Delft University of Technology (DUT), Delft, The Nether-
lands, in 1991.

From 1992 to 1996, he was an Associate Research Scientist with the Elec-
trical Engineering Department, DUT. In 1996, he joined the Natlab, Philips Re-
search Laboratories, Eindhoven, The Netherlands. His current research interests
are on-chip communication, embedded memories, and system-level timing so-
lutions.

Kees Goossens received the Ph.D. degree from the University of Edinburgh,
Edinburgh, The Netherlands, in 1993.

He has been with Philips Research, Edinburgh, The Netherlands, since 1995,
where he has led the research on networks on chip for consumer electronics,
where real-time performance, predictability, and costs are major constraints.

	toc
	An Efficient On-Chip NI Offering Guaranteed Services, Shared-Mem
	Andrei R dulescu, John Dielissen, Santiago González Pestana, Om
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. N O C S ERVICES
	Fig.€1. Transaction model.
	Fig.€2. Types of connections.
	Fig.€3. NI kernel and shells.

	IV. NI A RCHITECTURE
	A. NI Kernel Architecture
	NI Ports: The NI kernel communicates with the NI shells via port

	Fig.€4. NI kernel ports.
	Connection Implementation: A peer-to-peer connection consists of

	Fig.€5. Connection implementation.
	Fig.€6. Average link bandwidth.
	Fig.€7. Æthereal packet format.
	NI Scheduler: We implement a scheduler to arbitrate between the

	Fig.€8. NI kernel architecture.
	Fig.€9. Control data associated with a flit.
	NI Kernel Optimizations: To increase the NoC efficiency, it is p

	Fig.€10. Average link utilization relative to data threshold.
	Fig.€11. Average latency relative to data threshold.
	Fig.€12. Average NI buffer utilization relative to data threshol
	Fig.€13. Average link utilization relative to flow-control thres
	Fig.€14. Average latency relative to flow-control threshold.
	Fig.€15. Average NI buffer utilization relative to flow-control
	Fig.€16. Master shell.
	Fig.€17. Slave shell.
	B. NI Shell Architectures
	Master/Slave Shells Architecture: In Figs.€16 and 17, we show a

	Fig.€18. AXI message format examples.
	Fig.€19. Narrowcast shell.
	Narrowcast Shell Architecture: In Fig.€19, we show an example of
	Multichannel Shell Architecture: When a slave using a connection
	V. N ETWORK C ONFIGURATION

	Fig.€20. Multiconnection shell.
	Fig.€21. NI configuration.
	A. NI Configuration
	VI. I MPLEMENTATION
	A. NI Area

	Fig.€22. Example of topology description.
	Fig.€23. Six-port NI layout.
	B. NI Latency

	Fig.€24. Six-port NI area details.
	Fig.€25. NI area.
	VII. C ONCLUSION
	A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C.
	ARM, AMBA AXI Protocol Specification, Mar. 2004.
	N. Banerjee, P. Vellanki, and K. S. Chatha, A power and performa
	L. Benini and G. De Micheli, Powering networks on chips, in Proc
	R. A. F. Bhoedjang, T. Rühl, and H. Bal, User-level network inte
	P. Bhojwani and R. Mahapatra, Interfacing cores with on-chip pac
	G. Blair, A. Campbell, G. Coulson, F. Garcia, D. Hutchison, A. S
	E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, QNoC: QoS arch
	G. Buzzard, D. Jacobson, S. Marovich, and J. Wilkes, Hamlyn: A h
	T. Callahan and S. C. Goldstein, NIFDY: a low overhead, high thr
	A. Chien, M. Hill, and S. Mukherjee, Design challenges for high-
	D. J. Culler, J. P. Singh, and A. Gupta, Parallel Computer Archi
	W. J. Dally and B. Towles, Route packets, not wires: on-chip int
	S. Dutta, R. Jensen, and A. Rieckmann, Viper: a multiprocessor S
	O. P. Gangwal, J. Janssen, S. Rathnam, E. Bellers, and M. Durant
	S. G. Pestana, E. Rijpkema, A. R dulescu, K. Goossens, and O. P.
	K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. R
	K. Goossens, O. P. Gangwal, J. Röver, and A. Niranjan, Interconn
	K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, Netw
	P. Guerrier and A. Greiner, A generic architecture for on-chip p
	A. Jalabert, S. Murali, L. Benini, and G. De Micheli, XpipesComp
	F. Karim, A. Nguyen, and S. Dey, An interconnect architecture fo
	K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiov
	P. Klapproth, General architectural concepts for IP core re-use,
	S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J
	W. S. Lee, W. J. Dally, S. W. Keckler, N. P. Carter, and A. Chan
	J. Liang, S. Swaminathan, and R. Tessier, aSOC: A scalable, sing
	J. Liu, L.-R. Zheng, and H. Tenhunen, Interconnect intellectual
	M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, Guaranteed ban
	S. S. Mukherjee and M. D. Hill, A Survey of User-Level Network I
	OCP International Partnership, Open Core Protocol Specification.
	Philips Semiconductors, Device Transaction Level (DTL) Protocol
	J. Rexford, Tailoring router architectures to performance requir
	E. Rijpkema, K. Goossens, A. R dulescu, J. Dielissen, J. van Mee
	M. T. Rose, The Open Book: A Practical Perspective on OSI . Engl
	A. R dulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wie
	A. R dulescu and K. Goossens, Communication services for network
	M. Sgroi, M. Sheets, K. Keutzer, S. Malik, J. Rabaey, and A. San
	P. Steenkiste, A high-speed network interface for distributed-me
	A. S. Tanenbaum, Computer Networks . Englewood Cliffs, NJ: Prent
	D. Wiklund and D. Liu, SoCBUS: Switched network on chip for hard
	D. Wingard, Socket-based design using decoupled interconnects, i
	H. Zhang, Service disciplines for guaranteed performance service

