
Chapter 2

SERVICE-BASED DESIGN OF SYSTEMS ON
CHIP AND NETWORKS ON CHIP

Kees Goossens, Santiago González Pestana,
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Abstract: We discuss why performance verification of systems on chip (SOC) is difficult,
by means of an example. We identify four reasons why buildingSOCs with pre-
dictable performance is difficult: unpredictable resource usage, variable resource
performance, resource sharing, and interdependent resources. We then intro-
duce the concept of a service, aiming to address these problems, and describe
its advantages over “ad-hoc” approaches. Finally, we introduce the ÆTHEREAL

network on chip (NOC) as a concrete example of a communication resource that
implements multiple service levels.
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1. INTRODUCTION
Moore’s Law results in increasing computational power, which enables so-

phisticated functions to be incorporated in ever-smaller devices. Consumer
electronics is shifting from discrete tethered devices to pervasive systems em-
bedded in every-day objects. The increased interaction with the real world (e.g.
managing the intelligent home, as opposed to e.g. a stand-alone personal com-
puter) requires real-time reactions, a high degree of reliability, and, for user
comfort, predictable behaviour.

Moreover, as the computational power of these systems grows, more ad-
vanced algorithms are introduced, such asMPEG4 (moving-picture experts
group) and 3D graphics. These algorithms make use of the increased flexi-
bility (software-programmability) of embedded systems. Combining variable
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resource requirements (computation, storage, and communication) with the ro-
bust and predictable behaviour required by embedded consumer-electronics
devices is the challenge that we address in this chapter.

The embedded systems just described are implemented using one or more
chips, which together contain one or moresystems on a chip(SOC). SOCs
are composed of hardware components (intellectual property, or IP), which
are interconnected by a communication infrastructure, here assumed to be a
network on a chip(NOC).

Designing aSOC is an expensive undertaking, requiring large hardware and
software design teams. The bulk of the effort ofSOC design resides not in the
design of theIP, but in their composition or integration into a larger, working
whole. Verifying that the ensemble ofIP behaves correctly with the required
functionality and real-time performance is the bottle neck inSOC design.

In this chapter we advocate that the notion ofservicescan ease system de-
sign. Computation, communication, and storage services enable the construc-
tion of modularSOCs, allowing compositional verification.

Overview In the following section we describe and analyse the problem of
performance verification ofSOCs. Building on the notions of resources, their
usage and performance, we show that unpredictable resource usage, variable
resource performance, and resource sharing, complicate the construction of
predictable systems. In Section 3 we define the service concept, describe its
advantages over “ad-hoc” approaches, and show how it addresses the perfor-
mance verification problems identified earlier. In Section 4 we describe a con-
crete application of the concepts. The ÆTHEREAL NOC implements two com-
munication service levels (Goossens, Dielissen, van Meerbergen, Poplavko,
Rădulescu, Rijpkema, Waterlander and Wielage, 2003; Rădulescu and Goos-
sens, 2004). We describe their implementation, intended usage, and how they
tackle the problems listed above. In Section 5 we reflect and conclude.

2. RESOURCES: THEIR PERFORMANCE
AND USAGE

IP re-useaddresses the so-called design-productivity gap by usingIPs in
derivative and multiple designs. This approach works well for components,
such as peripherals, memories, programmable processors, communication in-
frastructure, and real-time operating systems (RTOS). Platforms(Keutzer, Ma-
lik, Newton, Rabaey and Sangiovanni-Vincentelli, 2000), such as Philips’s
Nexperia (de Oliveira and van Antwerpen, 2003), provide the next level of re-
use, by defining interfaces and protocols to connect the re-usable components
(both hardware and software).
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As an example, consider one of Philips’s largestSOCs to date,PNX8550,
shown in Figure 2-1 (Goossens, Gangwal, Röver and Niranjan, 2004), which
exemplifies the Philips Nexperia platform. Many parts of its design are re-
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Figure 2-1. Simplified block diagram ofPNX8550.

used from earlier designs, or are standard components that can be found in
the library of Nexperia-compliantIP. They are combined using the device-
transaction-level (DTL, 2002) hardware and TriMedia streaming software ar-
chitecture (TSSA) software protocols, and use thePSOS operating system, as
prescribed by the platform.

PNX8550 implements many set-top-box and video-enhancement functions,
which require predictable real-time audio and video streaming.Performance
verificationis the difficult task of ensuring that the assembly of the large num-
ber of computation, storage, and communicationIP meets all real-time con-
straints under all circumstances.

Although platforms have made assembling aSOC much easier, insufficient
steps have been taken in applying the same ideas to performance verification
of the resultingSOC. We tackle this issue by enriching the platform concept
with services, to allow more explicit descriptions of, and reasoning about per-
formance.

2.1 Why is Performance Verification Difficult?
ConsiderPNX8550, and assume that both TriMedia processors (TM32 in

Figure 2-1) have a cache, and run multiple real-time tasks scheduled by aRTOS.
If we want to know the time it takes a task on one of the TriMedia processors to
communicate with a task on the other TriMedia using shared external memory,
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there are several issues to consider. First, each task shares its TriMedia with
other tasks. PSOS supports task preemption, and its arbitration mechanism
therefore determines the delay before a tasks is active. Second, the caches may
or may not contain the instructions and/or data of the task in question, resulting
in a varying delay before the requested data is produced. Moreover, the cache is
shared with other tasks on the same TriMedia. For example, an interrupt prior
to swapping in the task could have flushed the cache, delaying the task’s start.
Third, the communication between the tasks uses the external memory. The
memory is attached to the memory controller, which is again a shared resource
with a sophisticated arbiter. Depending on the arbitration scheme employed,
the write and read latencies and bandwidths may be influenced by other traffic
contending for the external memory, such as theMIPS and the streaming traffic
from the pipelined memory-access (PMA) interconnect (Goossens et al., 2004).
As a result of these phenomena, computing the communication performance
(latency and bandwidth) between the two tasks is non-trivial.

Resources and Users In the above example, we can identify several
kinds of resources: computation(TriMedia, MIPS, IP such as the quality tem-
poral noise reduction orQTNR), communication(device-control-and-status (DCS)
andPMA interconnects), andstorage(caches, off-chip and on-chip memories).
These are used by several types ofusers: tasks (of computation), communi-
cation connections (of communication), and buffers for intermediate results or
for communication (of storage).

In the example there are four independent factors complicating the perfor-
mance analysis, as shown in Table 2-1: unpredictable resource usage, variable
resource performance, users sharing resources, and (inter)dependence of mul-
tiple resources. We discuss each in turn below.

Table 2-1. Independent factors complicating performance analysis.

user resource
uncertainty unpredictable usage variable performance

multiple shared resource resource dependence

2.1.1 Unpredictable resource usage.

Algorithms defined by newer data compression standards, such asMPEG,
are increasingly dynamic. For example,MPEG2’s data compression allows
variable bit rates, andMPEG4 uses dynamic object creation. As a result, the
usage of resources (computation, communication, and storage) to encode or
decode is variable. Figure 2-2 shows an abstract example of time-varying usage
of a resource (“instantaneous usage”).
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Figure 2-2. Variable resource usage and requested performance.

As an example, compressedMPEG2 data streams usually contain so-called
I frames followed by several B and P frames. I frames are larger than B and P
frames, and require more computation to decode them. However, I frames are
required to decode B and P frames, and hence the memory requirements (size
and bandwidth) to decode B and P frame are larger than those for I frames.
However, a set-top box, for whichPNX8550 is designed, must display a con-
stant number of pictures per second on theTV screen, regardless of the content
MPEG stream. Thus, even in aSOC with predictable resources, if their usage is
variable, care has to be taken to ensure results with constant quality.

2.1.2 Variable resource performance.

As shown abstractly in Figure 2-3, resources themselves can have varying
performance. The “instantaneous performance” of a resource, such as instruc-
tions per second, can vary over time for architectural reasons, as we describe
below.
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Figure 2-3. Variable resource performance and offered performance.

Computation resources, such as aMIPS, can have variable performance due
to low-power (sleep) modes, which introduce a wake-up delay. In addition,
techniques to reduce power consumption, such as voltage and/or frequency
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scaling, give rise to multiple steady-state performance levels. As a result, the
time it takes to perform a given fixed computation can vary.

Storage resources provide two examples of architectural variability: caches
and volatile memories. A cache returns the requested data after a variable
time. If the requested data is in the cache, it is returned quickly, but in the
case of a cache miss, the data is returned after a much longer time. A cache
therefore improves theaverageperformance, but not theguaranteed(worst-
case) performance. Although cache has a known deterministic algorithm, it is
difficult to characterise its performance.

Volatile memories, such as dynamic random-access memories (DRAM), lose
their data after some time, unless it is refreshed. The periodic refresh takes a
long time, compared to a single memory access. This can result in unpre-
dictable access times to the memory, depending on whether a read access is
delayed by a refresh or not. Moreover, the order of read and write transactions,
as well as the order in which transactions access the memory banks has a large
impact on the memory’s nett bandwidth. Thenett bandwidthis the number of
user data words per second as opposed to the number of cycles per second that
the memory is occupied (gross bandwidth). Memory controllers therefore of-
ten reorder transactions to maximise the (average) nett memory bandwidth. As
a result, the memory bandwidth and latency that a user experiences is depen-
dent on his transactions (e.g. mix of reads and writes). Although the memory
controller uses a known deterministic algorithm, the resulting average perfor-
mance is difficult to characterise, like for caches, described above.

It is important to note that the variation in resource performance isnot in-
trinsic, but is a consequence of the resource architecture. (Single-event upsets,
such as alpha particles are an exception. They must be dealt with using error-
correcting techniques.) The variable resource performance can be due to the
resource’s internal behaviour that, however, affects the user (e.g. processor
sleep modes andSDRAM refresh), or it can be user dependent and difficult to
capture (e.g. caches, or memory transaction reordering). In Section 3.2.2 we
show examples of how architectures can be made predictable, and how their
behaviour can be made to depend more clearly on the behaviour of users, using
services.

2.1.3 Shared resources.

Consumer-electronicsSOCs such asPNX8550 must deliver huge computa-
tional performance at low cost to the end-user. The number of computation,
communication, and storage resources must therefore be minimised, and be
used efficiently. Often this entailssharinga resource between multiple users.

For example, the programmable processors (TriMedia,MIPS) are shared be-
tween multiple tasks, and often include a real-time operating system (RTOS)
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with some arbitration policy, which makes a task’s execution time dependent
on other tasks. Moreover, modern processors pipeline instructions, perform
speculative execution, and so on. As a result, executing a given number of in-
structions may take different lengths of time, depending on e.g. the interleaving
with other instruction streams. As a result, computing the number of (millions
of) instructions per second (MIPS) as opposed to processor clock speed, may
be difficult.

External memories are expensive because they raise the cost of the chip
package, by introducing extra pins. InPNX8550, therefore, a single large ex-
ternal memory is used for the communication between streamingIPs. The
scarce memory bandwidth is shared to near its capacity by the programmable
processors and streamingIP. As we saw in the previous section, the memory’s
nett bandwidth is strongly impacted by the order of read and write transactions,
as well as the order in which transactions access the memory banks. The mem-
ory controller therefore reorders transactions of the multiple users to maximise
the nett memory bandwidth. As a result, the memory bandwidth and latency
that a single user experiences is dependent on not only his, but also on other
users’s transactions.

Finally, shared “single-hop” communication infrastructures between multi-
ple IP, such as busses and switches, contain a single arbiter, and face similar
issues. For example, theDCS busses inPNX8550 use round-robin arbitra-
tion, and thePMA communication infrastructure uses a multi-level arbitration
scheme (described in Goossens et al., 2004).

In all cases, many different arbitration policies are possible, when sharing
a resource, e.g. first-come first-serve, round-robin, time-division-multiple-
access (TDMA ), and rate-monotonic scheduling. From the perspective of a
single resource user, they introduce uncertainty regarding the resource perfor-
mance. For example, the latency or bandwidth of a memory or bus may vary,
depending on the behaviour of other users. This complicates the construction
of a predictableSOC as a whole. Therefore, to design a predictableSOC it is
helpful if shared resources use arbitration mechanisms amenable to analysis,
e.g.TDMA (Rijpkema, Goossens, A. Rădulescu, van Meerbergen, Wielage and
Waterlander, 2003), deadline-monotonic scheduling (Audsley, Burns, Richard-
son and Wellings, 1991). Next to this, to facilitate reasoning about perfor-
mance, each user of a resource is preferably presented with a view on the re-
source that is independent of other users.

2.1.4 Dependence of multiple resources.

In the example at the start of this section, the two communicating tasks
each used two shared resources: the programmable processor (computation)
and the external memory (storage). (The communication infrastructure is not
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shared for the programmable cores.) To reason about task-to-task communi-
cation performance, we must reason about all arbiters that are involved: it is
the composition of the arbiters that determines theend-to-endperformance.
For example, a bandwidth guarantee ofx bytes/sec on both processors and
the external memory (ignoring caches), doesnot guarantee that the end-to-end
(i.e. task-to-task) bandwidth isx. In the worst case, mismatched arbitration
can cause starvation, resulting in zero bandwidth. The presence of “gates” or
“bridges” in an architecture (see, e.g, Figure 2-1) couple arbiters of different
resources, and are an indication that these issues could arise. (In fact, the gate
and bridge inPNX8550 are well-behaved (Goossens et al., 2004).)

We use the term(inter)dependencefor the effect that arbiters of different
resources interact in an unforeseen or unintended manner, possibly degrading
end-to-end performance. All shared resources that are used by a single user
must be taken into account in an end-to-end performance analysis. Several ap-
proaches tackling this analysis are being investigated (Sha and Sathaye, 1993;
Richter, Jersak and Ernst, 2003; Bekooij, Moreira, Poplavko, Mesman, Pastr-
nak and van Meerbergen, 2004), and they rely on expressing the user behaviour
(e.g. worst-case execution time) and local arbitration policies in a single for-
malism for end-to-end reasoning.

As a special case, when the resources are of the same type, more specialised
approaches exist. In particular,NOCs are “multi-hop” communication infras-
tructures, meaning that they are composed of multiple routers (or switches),
each with their local arbiter. Fundamentally, this leads to the problem of inter-
fering arbiters identified above. There is a great deal of research on providing
end-to-end service guarantees in computer networks (Zhang, 1995; Rexford,
1999), andNOCs (Rijpkema et al., 2003; Goossens et al., 2003; Millberg, Nils-
son, Thid and Jantsch, 2004; Liang, Swaminathan and Tessier, 2000) to which
we return in Section 4.

For the construction of predictableSOCs, it must be possible to clearly de-
scribe and manage the interrelations and interdependencies between the be-
haviours of multiple resources. We believe that services, defined in the next
section, provide a first step towards this goal.

2.2 Conclusions
We identified four reasons why performance verification is difficult: un-

predictable resource usage, resources with variable performance, sharing of
resources, and dependencies between multiple resources. These causes are in-
dependent and several of them usually act simultaneously, as we saw in the
example of Section 2.1.

The first reason, unpredictable resource usage, is often externally imposed
(external standards). Many algorithms, however, are, or can be made pre-
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dictable, perhaps at some cost. We believe that service (levels), introduced
below, can be used to characterising resource usage, in order to limit the ef-
fects of unpredictable resource requirements. The remaining reasons are due
to architectural choices, which are under our own control. Service-based de-
sign, introduced in the next section, can help in making the right choices.

3. OFFERING AND USING SERVICES
In the previous section we identified four reasons why performance verifica-

tion of SOCs is difficult, based on resources and resource users. In this section
we describe and contrast two approaches to buildSOCs: ad hoc and based on
services. We motivate why we believe the latter has many advantages.

Ad-Hoc Systems The ad-hoc approach basically consists of instantiating
a number of resources, adding arbiters to those that are shared. Performance
verification is then difficult for the following reasons.

To verify the performance of aSOC it must be considered in its entirety. It
is not possible to consider the constituent resources in isolation because
their behaviours are (inter)dependent and can interfere with one another,
as we saw in Section 2.1.4.

To accurately understand the completeSOC behaviour, current practice
uses simulation of all (interdependent) resources in full detail. However,
accurate simulation of the completeSOC is slow, which limits the number
and length of simulations that can be performed. Moreover, simulation
can only cover a small part of all possibleSOC states and inputs (traces).
It may be difficult to force aSOC to be in its worst state (e.g. longest
latency) with simulation, especially if the worst state is unknown in ad-
vance. As a result, the observed worst case of the simulated traces can
be much smaller than the real worst case. This could lead to underdi-
mensioned resources (such as communication buffers), and aSOC that
will not function correctly under all circumstances.

If, during the performance verification process, aSOC is found to not
meet its specification, a simulation trace does not necessarily give insight
in how to remedy the problem. The most obvious cure, increasing the
number of (shared) resources, may actually decrease the performance.

It is not easy to make ad-hocSOCs robust. Activation of a new user (e.g.
a picture-in-picture in a set-top box) may cause a workingSOC to fail
completely, instead of affecting only the new user. We shall return to
this issue below, in Section 3.2.1.

Below, we propose a compositional solution that is based the concept of ser-
vices, to characterise and decouple the behaviour of both resources and users.
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3.1 Services
We compose aSOC of resources such as processors, memories, andNOCs.

These resources offerservices,1 which are requested and used by users. A
user service request includesattributes to specify the desired servicelevel.
Examples of computation, communication, or storage service attributes are
(Rădulescu and Goossens, 2004):

Uncorrupted completion, e.g. of a write transaction to a memory, or its
transport by the communication resource. If an action completes, then it
is guaranteed to be correct.
Guaranteed completion. This is not automatic; e.g. a task may be
blocked until a minimum amount of memory is available, and in aNOC

data may be dropped in case of congestion.
(Minimum) capacity, e.g. amount of buffering, the number of simulta-
neous users of a resource.
Ordering: is there any ordering between subsequent actions? Examples
are read transactions from one masterIP to multiple slaveIPs, which in a
NOC can come back out of order, and also multiple computations which
can finish out of order on a processor.
(Minimum) average throughput, measured in instructions per second for
computation resources, and bytes per second for memory and communi-
cation resources.
(Maximum) bound on the completion time. Guaranteed completion is
defined as an unspecified completion time less than infinity; here the
maximum is finite and known in advance. Examples are the latency of
a read transaction on the memory, or its transport by the communication
resource.
(Maximum) variation in completion time (jitter), which is important for
real-time audio and video.

These service attributes can be combined to specify a particular service level,
e.g. a communication connection between twoIPs could be lossless, ordered,
with 100 Mbyte/sec average throughput, and with a maximum latency of 0.8
microseconds.

A resource can offer different services levels (or differentiated services, Ku-
mar, Lashman and Stiliadis, 1998) to different users at the same time. For ex-
ample, aNOC may offer communication services with different latency, through-
put and jitter levels, e.g. for control traffic (low latency, low throughput) and

1Or: resources are used to offer services. In this chapter a narrow view on services is taken, by restricting
them to a single kind of resource (computation, storage, or communication). It is possible and useful
to generalise services to use multiple resources, as well as lower-level services. Examples are database,
printing, or secure-storage services.
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streaming traffic (high throughput, low jitter). It is fruitful to offer different
services levels simultaneously to increase the resource utilisation, as argued in
(Goossens et al., 2003; Rijpkema et al., 2003).

Most services must benegotiated(Figure 2-4): a user must specify and re-
quest his desired service level from the resource. A service level describes both

resource offers services

user uses services

offer service level (performance)

request service level (usage)

negotiation (e.g. with quality of service)

Figure 2-4. Users (request service level) negotiate with resources (offer service level).

the performance offered by a resource to a user (e.g. “theNOC has only lossless,
ordered connections available with at most 10 Mbyte/sec average throughput”),
as well as the (potentially different) performance requested by a user (“the cur-
rent task graph requires three connections with 5 Mbyte/sec average through-
put but without loss or ordering constraints”). If the resource commits to the
request, then the service is then guaranteed to be available until the user re-
leases the service, when he no longer needs it. Otherwise the resource rejects
the request, and the user must give up or retry with different (lower) service
requirements. Note that a service is either committed to (i.e. guaranteed) or
not. A resource cannot renegade on its commitment.

Services must be negotiated because the resource must ensure that its capac-
ity (storage size, instructions per second, bytes per second, etc.) is not over-
subscribed, to avoid invalidating the services it has already committed to. Re-
sources manage their number of users by performing admission control, which
is why users must specify their required services in advance. Moreover, after
admission, users must be prevented from using more than their allocated share
of the resource (Otero Pérez, Rutten, van Eijndhoven, Steffens and Stravers,
2005).

The service concept is well established: it originated in protocol communi-
cation stacks, e.gOSI (Rose, 1990) and has been extended to cover resource
discovery, leases, etc. in approaches such as Sun’s Java Jini (Jin, 2001), and
HAVi (HAV, 2000; Lea, Gibbs, Dara-Abrams and Eytchison, 2000). Alease
is a service that is valid for a certain amount of time (we have assumed it will
remain valid until the user releases it). This is more robust, in case the resource
user does not correctly release resources (e.g. in the case of unreliable com-
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munication between user and resource, or malicious or fault users), or when
resources are inherently unreliable. Although currently not required forSOCs,
we anticipate that these techniques will be applicable in the long term.

3.2 The Advantages of Using Services
We will now describe how services are used to ease each of the four ob-

stacles to building predictableSOCs, identified in Section 2.1: unpredictable
resource usage, variable resource behaviour, shared resources, usage of multi-
ple dependent resources (Table 2-1). Table 2-2 outlines how services address
each case; a fuller description is given below.

Table 2-2. Services simplify performance analysis.

user resource
uncertainty characteriseunpredictable usage abstractvariable performance

multiple virtualiseshared resources decoupleresource behaviours

3.2.1 Services characterise unpredictable resource usage.

Quality of serviceis the process whereby a trade off is made between the
available resources and the requests to implement the functionality (quality)
required by the user (Figure 2-4). For example, suppose that a set-top box dis-
plays a high-definition film, when the user requests a picture in picture (PIP)
(Otero Ṕerez, Steffens, van der Stok, van Loo, Alonso, Ruı́z, Bril and Valls,
2003). With the resources available in theSOC it may not be possible to honour
this request. The first possible course of action (“ad-hoc,” common in personal
computers) is to activate thePIP anyway. This will result in a mode where nei-
ther the high-definition film nor thePIP are displayed correctly, and the result
can be anything from a “blue screen” (crashed system) to a garbled screen. Al-
ternatively, in a service-basedSOC, the quality-of-service manager requests the
additional services required by thePIP (e.g. additional memory bandwidth)
from the appropriate resources. If not all resources commit to the requested
services, then the high-definition film andPIP can not be activated simultane-
ously. TheSOC could inform the user that this is the case. (Note that the high-
definition film has been running undisturbed throughout this process.) Another
option would be to change the high-definition film to a standard-definition film
(requiring fewer resources), freeing enough resources to also support thePIP.

Here we are concerned not so much with quality of service, but rather how
to enable it. Services form the basis, by abstracting variable resource usage
to requested services for users (see Figure 2-2), and by abstracting variable
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resource performance to offered services (see Figure 2-3) for resources. We
first discuss discuss the former, the next section describes the latter.

Different service levels abstract instantaneous resource requirements of the
user. This allows less frequent negotiation (“negotiated usage” versus “instan-
taneous usage” in Figure 2-2), at the cost of claiming too many resources. The
limits of this trade off are continuous negotiation (returning to “instantaneous
usage”) and worst-case design with no negotiation (“worst-case usage”). Two
renegotiations are shown in Figure 2-2: the first reduces the negotiated usage,
and the second increases it.

Services simplify the interface and corresponding interaction between user
and resource because the requirements of the user are requested using abstract
service levels, instead of detailed descriptions of actual instantaneous usage.
This simplifies the implementation of resources.

Moreover, as thePIP example demonstrates,SOCs are more robust when
using services because it is possible to verify in advance that a mode change
will succeed, without disturbing active functions.

3.2.2 Services abstract variable resource performance.

Different service levels offered by a resource can also abstract its variable
resource performance. As an example, in Figure 2-3 the instantaneous actual
performance of a resource (e.g. voltage-controlled processor) may be variable
and difficult to capture exactly. The offered performance therefore offers sim-
plified view on the resource (e.g. piece-wise constant). Two reconfiguration
points are shown, which could correspond to an adaptation of voltage to change
processor speed.

Services offer an abstract view on resource performance, to make it simpler
for users to claim the performance they desire. For example, aNOC user could
ask for a connection with 100Mbyte/sec average throughput and a maximum
latency of 2 microseconds. TheNOC translates this abstract request for nett
bandwidth (user data per second) to its internal representation of gross band-
width (which takes into account, e.g. packetisation and flow-control overhead,
and the number and spacing ofTDMA slots). The underlyingNOC arbitration
policy (TDMA or otherwise) and architecture (flow control or not), etc. that
implement the services are hidden from the user because they are irrelevant to
him. The translation from gross resource performance to what is offered nett
to the user may not be easy, as we have seen in Section 2.1.2. In Section 4 and
elsewhere in this volume (Gangwal, Rădulescu, Goossens, González Pestana
and Rijpkema, 2005) we describe in more detail the ÆTHEREAL NOC where
this translation has been implemented successfully.

Abstract services also makeQOS independent of particular resource imple-
mentations.QOS managers match the requested user services with the offered
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resource services. After resources have committed to providing services they
must not renegade on its commitment, because this makes the notion of nego-
tiation superfluous, and makes it hard for theQOS manager to offer a reliable
service to end users. Taking processor power management as an example,
Simunic, Boyd and Glynn, 2004 describes how resources can autonomously
change their performance (e.g. frequency) to optimise a power budget. This
impacts the service levels users receive. Instead resources should regulate
their performance in concordance with its users. A good example is the au-
tonomous islands of performance of Meijer, Pessolano and Pineda de Gyvez,
2004, where a resource’s performance (operating frequency) is specified by
the user, and the resource internally finds an optimal operating point (using
adaptive voltage scaling and adaptive body bias) that guarantees the requested
performance, even under (varying) environmental conditions (such as silicon
processing variations, and voltage drops). Predictable system-level power and
performance management can be built on top of these islands of performance
(Hu and Marculescu, 2004).

3.2.3 Services virtualise shared resources.

In Section 2.1.3 we discussed how sharing a (constant-performance) re-
source can result in a variable performance for a single user. However, when,
in a service-basedSOC, a resource commits a particular service level to a user,
it guarantees that the service is available to the user independent of other users
of the resource. Thus, every user has his ownvirtual resource, with a perfor-
mance that has been agreed upon during negotiation.

As a result, the users can be simpler because they have fewer failure modes.
A user can be affected by the other users only during negotiation for a ser-
vice (when the resource rejects the request), instead of any point in time (as
happened in the ad-hoc implementation of thePIP example of Section 3.2.1).
Services can thus isolate users from one another. This avoids the need for
cooperation between users (such as required by e.g. the internet’s transmis-
sion control protocol), and can make theSOC more robust against erroneous or
misbehaving users (Kumar et al., 1998).

3.2.4 Services decouple usage of multiple resources.

In Section 2.1.4 we observed that when a user uses multiple shared re-
sources, unforeseen interactions (dependencies) between these resources can
affect the end-to-end performance the user obtains. The previous section showed
that services decouple (or isolate) users of a single shared resource, and that
each user can reason about his services independent of other users. As a result,
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when a user uses multiple shared resources, he can reason about all resource
reservations independently (they are decoupled).

However, as discussed in Section 2.1.4, and as is shown elsewhere (Bekooij
et al., 2004), resource requirements are interdependent when end-to-end per-
formance guarantee must be given that involve multiple resources. For exam-
ple, when two tasks on different processors communicate via shared memory,
the processor bandwidth, memory bandwidth, and memory buffer size are in-
terdependent.

Although services do not remove this interdependence, there are several ad-
vantages when they are used. First, resource performance is reasoned about
in terms of abstract nett service levels rather than the actual detailed resource
implementation. Second, users of shared resources can be considered indepen-
dently because they each have their own virtual resource. Both cases reduce the
complexity of theQOS manager, which can use data-flow (Bekooij et al., 2004),
and other (Richter et al., 2003) techniques to compute the resource reservations
that ensure end-to-end (e.g. task-to-task) performance guarantees.

3.3 Conclusions
In this section we introduced the notions of services and service levels. A

requested service level serves to abstract or simplify the description variable
resource requirements of a user (Figure 2-2) by hiding internal details and dy-
namism. Similarly, an offered service level serves to abstract or simplify the
description of the variable offered performance of a resource (Figure 2-3). Fig-
ure 2-4 then shows how aQOS manager matches the requested and offered ser-
vices, using negotiation. Abstract, implementation-independent services are
an important enabler for effectiveQOS.

Servicesdecouplethe multiple users of a single resource (Section 3.2.3),
as well as the multiple resources used by a single user (Section 3.2.4). As a
result, resource users can be simpler, andSOCs can be made more robust. Al-
though resource interdependencies are not eliminated by services, they become
explicit and more abstract.

Service-based design can reduce functional and performance verification of
the completeSOC in several ways. First, users and resources are specified in
terms of their services. For example, a communication or storage resource
can be specified to support a certain number of users with particular service
levels (e.g. with nett bandwidths). Following this, they can be independently
designed, implemented, and their function and performance verified, because
their specifications and implementations do not depend on other users or re-
sources. Users implement their functionality making use of (building on top
of) services provided by the resources. It is easier to reason about abstract ser-
vices provided by resources than about their combined implementations. After
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integrating the verified user and resource implementations, theSOC as a whole
must be verified. Because resources are known to be correct, system verifica-
tion can take place at the level of services offered by the resources, and not
performed on the ensemble of all user and resource implementations (the ad-
hoc approach). This compositional method is also known asassume-guarantee
reasoning(Henzinger, Qadeer and Rajamani, 2000), because by guaranteeing
the performance or behaviour of components (service providers), this guaran-
tee can be used as a safe assumption in the performance analysis in the larger
SOC using it (service users). Services naturally provide the abstraction for the
guarantee step.

In the next section we will show how the ÆTHEREAL NOC can be automat-
ically generated, programmed, and verified because it has been designed with
these concepts in mind.

4. CASE STUDY: THE ÆTHEREAL
NETWORK ON CHIP

The communication infrastructure is key in any platform (Sgroi, Sheets,
Mihal, Keutzer, Malik, Rabaey and Sangiovanni-Vincentelli, 2001) because it
integrates allIP into a largerSOC, and because it is the locus of the platform
communication protocols. The communication infrastructure is therefore a
natural place to initiate a service-based design method. In this section we
discuss how Philips’s ÆTHEREAL NOC (Goossens et al., 2003) attempts to
solve the issues raised in Section 2 by introducing communication services, as
described in Section 3.
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Figure 2-5. SoC composed of heterogeneous IP interconnected by a NoC.

Figure 2-5, shows the basic architecture of aNOC. There are two different
points of view: (a) that of theNOC user, where the wholeNOC can be seen as
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a single resource providing communication services to different users, and (b)
the internalNOC view consisting of multiple interacting resources.

A NOC is composed of two components: routers (R) and network interfaces
(NI), see Figure 2-5. Routers transport data within theNOC. NIs convert theIP
view on communication (e.g. read and write transactions) to theNOC’s internal
view (e.g. packets, flow control). Importantly, theNIs also implement the
service abstraction, reducing theNOC’s internal multiple-resource view to a
NOC user’s single-resource view.

In the remainder of this section we describe ÆTHEREAL’s service-based
communication model, which comprisesbest-effort(BE) andguaranteed-through-
put (GT) service levels. We explain their characteristics and intended uses, and
how they aim to enable service-basedSOC design.

4.1 The Æthereal Communication Model
As discussed above, in theNOC internal view, ÆTHEREAL is a multi-hop

interconnect, i.e. it contains multiple components (routers andNIs). Each
of these components has a constant performance (e.g. everyNOC link has
2Gbyte/sec bandwidth, Rijpkema et al., 2003). TheNOC is shared by multi-
ple users, who may have variable resource requirements.

ÆTHEREAL offers communication services, and comprises thebest-effort
(BE, Section 4.1.1) andguaranteed-throughput(GT, Section 4.1.2) service lev-
els. These service levels have different characteristics and intended uses. The
BE service level exhibits several of the problems listed in Table 2-1, whereas
the GT service level does not. However, as argued in Goossens et al., 2003, it
is advantageous to offer both service levels to increase resource utilisation and
hence reduce cost.

Communication services are provided on connections (Rădulescu and Goos-
sens, 2004). A connection specifies the communication between one master
(e.g. the digital-signal processorDSP of Figure 2-5) and one or more slaves
(e.g. distributed shared memories). Figure 2-5 shows three example connec-
tions. The user indicates the required service level per connection by speci-
fying communication attributes, as described in Section 3.1. ABE connection
offers uncorrupted, lossless, ordered communication, to whichGT connections
add minimum throughput, maximum latency, and maximum jitter.

As discussed in Section 2.1, the translation from the user view on perfor-
mance to theNOC view on performance may be far from trivial. We illustrate
this for NOCs in Figure 2-6. A user of aNOC most often reasons in terms of ap-
plication data, such as bits per second of anMPEG stream (“nett bandwidth”).
Assuming this data is memory-mapped, theIP uses read and write transactions
to access the data, and a command and address are added to the application
data. TheNI convert these transactions into packets, by chopping it into pieces
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Figure 2-6. From user view to NoC view on communication.

and adding a header. Packets may be of different lengths, and theNOC may
also internally generate packets that are not visible to the user, e.g. for flow
control. As a result, the gross bandwidth to be claimed inside theNOC will be
more than the requested bandwidth for the application data. The strength of
ÆTHEREAL NOC is that the communication services include this nett to gross
bandwidth translation (described in detail in Gangwal et al., 2005).

The following two subsections describe theBE andGT service levels, and
how they enable the move from the internalNOC view on communication to the
user’s view on communication, by solving the problems described in Table 2-1
(resource sharing, interdependent resources).

4.1.1 The best-effort service level.

We first describe what theBE service level consists of, and how it is im-
plemented. Then we list which of the problems of Table 2-1 are present, and
finally motivate the reasons for offeringBE service level.

BE connections implement uncorrupted, lossless, ordered data transport (trans-
action completion is a result of absence of data loss). This is implemented by
a commonNOC architecture (Rijpkema et al., 2003): a packet-switchedNOC,
with input-queued routers using worm-hole routing and round-robin arbitra-
tion. Packets are never dropped, and credit-based end-to-end flow control is
used to avoid congestion. Packet ordering is ensured by deterministic source
routing.

A NOC will be shared by multiple users, and their packets may clash inside
theNOC. To solve this contention, routers andNIs use local round-robin arbitra-
tion. However, when a connection uses multiple routers orNIs, the combined
effect of multiple interdependent arbiters becomes difficult to characterise. In-
put queuing causes interdependencies between different connections (called
head-of-line blocking), and worm-hole routing causes interdependencies be-
tween arbiters of different routers. As listed in Table 2-3, these are examples
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Table 2-3. The best-effort service level.

problem (cf. Table 2-1) BE service level
unpredictable resource usage not addressed
variable resource performance not applicable

resource shared by multiple userslocal round-robin arbitration
multiple interdependent resourceslocal round-robin arbitration

of resource sharing and interdependent resources. Note that unpredictable re-
source usage is not addressed by theBE service level, and that each of the
routers andNIs has a constant performance.

As a result, end-to-end (IP-to-IP) service guarantees such as throughput,
latency, and jitter can not be given. Thus, only simulation can be used to
correctly dimension aNOC (including its topology, buffer sizes, etc.) for given
application requirements (throughput, latency, etc.).

Nonetheless, ÆTHEREAL offers theBE service level for a number of rea-
sons. First, it enables aNOC to be used where user resource requirements can
not be characterised well, or are highly variable. Moreover, not all applications
require real-time guarantees, such as web browsing or graphics. By using the
BE service level theNOC resources can be dimensioned for the average instead
of worst-case communication requirements. This allows a higher resource util-
isation, potentially using fewer resources, i.e. a smallerNOC. TheBE service
level therefore trades real-time performance for higher resource utilisation.

4.1.2 The guaranteed-throughput service level.

We first describe what theGT service level consists of, and how it is imple-
mented. Then we list how the problems of Table 2-1 are addressed.

TheGT service level adds minimum throughput, and maximum latency and
jitter bounds to theBE service level. This is implemented by aNOC architecture
first introduced by ÆTHEREAL (Rijpkema et al., 2003): a global distributed
TDMA arbitration scheme that emulates pipelined time-division-multiplexed
circuit-switched connections. ÆTHEREAL implements theglobal TDMA arbi-
tration in adistributedmanner (using only local synchronisation). This scheme
eliminates contention, and hence ensures minimal buffering in routers (one-flit
input queues for worm-hole routing). Figure 2-5 shows an exampleNOC with
threeGT connections, labelled a, b, and c, with the correspondingTDMA tables
and slot reservations.

A NOC will be shared by multiple users, as is the case for theBE service
level. However, theGT service level avoids contention in theNOC by means of
global TDMA arbitration. The same scheme also eliminates resource interde-
pendencies due to head-of-line blocking and worm-hole routing. As a result,
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Table 2-4. The guaranteed-throughput service level.

problem (cf. Table 2-1) GT service level
unpredictable resource usage must be characterised
variable resource performance not applicable

resource shared by multiple usersanalysable globalTDMA arbitration
multiple interdependent resourcesanalysable globalTDMA arbitration

throughput, latency, and jitter guarantees can be derived as described elsewhere
in this volume (Gangwal et al., 2005). As listed in Table 2-4, this solves re-
source sharing and interdependent resources that plagued theBE service level.
When aGT connection is requested, the required throughput, latency, and jitter
must be specified, to reserve communication resources (essentially, buffers and
slots in theTDMA tables), in contrast to aBE connection. Thus, the resource
usage must be characterised by the user, as discussed in Section 3.2.1. Finally,
note that each of the routers andNIs has a constant performance.

# User view: GT service-level request:
open_connection("decoder.mc","mem.p2","GT",

72 Mbyte/sec,2.5 ms,16 byte,72 Mbyte/sec,1.7 ms,16 byte)
# throughput, latency, burst size for read & write

# Internal NoC view: GT reservation:
open_connection("decoder.mc","mem.p2",

"GT","22-32","3 1 0",33, "GT","7-13","1",60)
# type, slots, path, credits for request & response

Figure 2-7. Service level versus GT connection reservation.

As a result, end-to-end (IP-to-IP) service guarantees such as throughput,
latency, and jitter can be given onGT connections. TheGT service level first
enables the transition from an internalNOC view to a service-based user view
(Figure 2-6). That is, the internal structure of theNOC is hidden for the user,
and the collection of resources (routers andNIs) behaves as a single resource.
A single global arbitration scheme (TDMA ) implements resource sharing, and
resource interdependencies are eliminated. Second, building on top of this,
the user’s (nett) requirements are translated to internalNOC (gross) resource
reservations by theNOC, as advocated in earlier sections. A simplified example
for a single connection is shown in Figure 2-7. A user specifies a connection
from a master to a slave with required nett bandwidth and latency constraints,
for given burst sizes, as shown in the top half of the figure. This is translated
to the internal resource reservation view, consisting of slots, path, credits, etc.,
shown in the lower half of the figure.

Disadvantages of theGT service level include the need to characterise user
communication requirements in advance. Between negotiation points (Fig-
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ure 2-2), resources are reserved for the worst-case, potentially increasing the
NOC size. TheGT service level therefore trades real-time performance for pos-
sibly higher resource requirements.

4.1.3 Combining BE and GT services levels.

In the two preceding sections we have introduced theBE and GT service
levels. The former aims for high resource utilisation for which it sacrifices
throughput and latency guarantees. The latter aims for real-time performance
guarantees, potentially at the cost of more resources (a largerNOC). By of-
fering both service levels, ÆTHEREAL resources are reserved as required for
GT connections, but unclaimed or unusedGT bandwidth is used byBE connec-
tions. As a result, real-time (GT) services and good resource utilisation (low
cost) are combined (Rijpkema et al., 2003; Goossens et al., 2003).

4.2 The Æthereal Design Flow
The ÆTHEREAL NOC design flow (Goossens, Dielissen, Gangwal, Gon-

zález Pestana, R̆adulescu and Rijpkema, 2005) comprises design-timeNOC

generation (i.e. dimension and generate theNOC hardware based on user re-
quirements),NOC configuration (compute the resource reservations from the
user requirements, as shown in Figure 2-7),NOC simulation, andNOC perfor-
mance verification (forGT connections). User requirements are usually stated
as a collection of modes (or use cases) that theSOC must support, andNOC con-
figuration therefore usually proceeds at the granularity of modes rather than
connections. Figure 2-8 shows an example of performance verification. Con-
nection 2 corresponds to the decoder.mc to mem.p2 connection of Figure 2-7.
For each connection the computed resource reservations (number ofTDMA

slots), specified and available (minimum) bandwidth and (maximum) latency
are shown, as well as the specified and required buffer sizes in theNOC. NOC

generation, configuration, and verification forGT connections is performed on
the basis of analytical models. Hence, simulation is only required ifBE con-
nections are used.

5. CONCLUSIONS
In this chapter we described and analysed the problem of performance verifi-

cation ofSOCs. We identified four reasons why buildingSOCs with predictable
performance is difficult (Table 2-1): unpredictable resource usage, variable
resource performance, resource sharing, and interdependent resources. We in-
troduced the concept of a service, aiming to address these problems, and de-
scribed its advantages over “ad-hoc” approaches. Finally, we introduced the
ÆTHEREAL NOC as a concrete example of a communication resource that im-
plements multiple service levels.
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Figure 2-8. Performance verification output example.
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Rijpkema, E., Waterlander, E. and Wielage, P., 2003, Guaranteeing the
quality of services in networks on chip,in A. Jantsch and H. Tenhunen
(eds),Networks on Chip, Kluwer, chapter 4, pp. 61–82.
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