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CONTINUING ADVANCES in semiconductor tech-

nology enable the integration of increasing numbers of

IP blocks in a single SoC. Interconnect infrastructures,

such as buses, switches, and networks on chips (NoCs),

combine the IPs into a working SoC. Moreover, the indus-

try expects platform-based SoC design to evolve to com-

munication-centric design, with NoCs as a central

enabling technology.1

In this article, we introduce the Æthereal NoC.2-4 The

tenet of the Æthereal NoC is that guaranteed services

(GSs)—such as uncorrupted, lossless, ordered data

delivery; guaranteed throughput; and bounded laten-

cy—are essential for the efficient construction of robust

SoCs. One reason is that many IPs have inherent perfor-

mance requirements, such as a minimum throughput

(for real-time streaming data) or bounded latency (for

interrupts). Furthermore, because the traffic of different

IPs does not interfere with each other, the IPs’ behaviors

are decoupled; thus, the IPs can be designed and tested

independently of each other and the NoC. This aids in

the compositional design and programming of SoCs.

GSs require resource reservations for the worst case.

To exploit the NoC capacity unused by GS traffic, we

also provide best-effort services (BESs). GSs serve criti-

cal (for example, real-time) traffic, and BESs serve non-

critical communication.

Many architectures that implement

BESs already exist, but our concept of

contention-free routing is one of the first

to offer guaranteed services—throughput

and latency, in particular—in addition to

BESs. GSs require resource reservation;

the Æthereal NoC thus requires configu-

ration and programming. We offer alter-

native programming models and router

architectures to facilitate design space exploration: A

system architect can optimize a NoC with either a dis-

tributed programming model (for scalability) or a cen-

tralized programming model (for low cost). In the latter

case, he can choose between a NoC without BESs or one

with normal or improved BES performance. Of course,

better services cost more. All alternative NoCs are based

on contention-free routing, and, as a result, the Æthereal

design flow can generate, program, and simulate them.2

Performance guarantees in networks
Researchers have paid much attention to the prob-

lem of building networks (both on- and off-chip) with

predictable performance.5-8 Fundamentally, there are

two reasons for unpredictable network behavior: First,

the network can drop packets as a result of buffer over-

flows, misrouting, router failure, and so forth. A given

drop rate provides only a statistical reasoning about

packet arrival, not a hard, 100% guarantee. Second,

even if the network does not drop any packets, packets

share resources (such as wires and buffers) with other

packets. When two packets attempt to use the same

resource at the same time, contention occurs and the

network must either delay or drop one of the packets.

Delayed packets often delay the packets following

them, causing network congestion.
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To offer guaranteed performance in NoCs, we

observe that their characteristics differ from those of off-

chip networks. First, NoCs can avoid dropping data,

assuming that a SoC operates reliably (that is, its routers

do not fail, misrouting does not occur, and so forth).

Buffer overflow is avoidable by implementing flow con-

trol, as we describe later. This is much harder in off-chip

networks, where wires are deeply pipelined and rela-

tively longer, than in NoCs.

Secondly, contention exists in both NoCs and off-

chip networks. There are several ways to address this

problem in a NoC. First, contention and congestion are

acceptable, as long as an upper bound is statically

determinable. Rate-controlled and deadline-based arbi-

tration schemes7,8 are two ways to determine this upper

bound. However, both schemes require large buffers,

which make routers unacceptably expensive.

Alternatively, contention is avoidable by ensuring that

two packets are never at the same place at the same

time. Circuit switching can enforce distinct places giv-

ing each communication its own wire; time multiplex-

ing can enforce distinct times. Of course, combinations

are also possible. In NoCs, wires are relatively short, and

routers can synchronize relatively easily (for time-divi-

sion multiplexing).

Multimedia systems contain many real-time data

streams, but with different requirements. As a result, pri-

ority-based schemes do not work well, because all

streams are equally important. Within the single real-

time priority, all streams would behave like BESs

between themselves, which is insufficient.

Given these insights, the Æthereal NoC uses con-

tention-free routing, or pipelined time-division-multi-

plexed circuit switching, to implement its guaranteed

performance services. Although all data streams have

the same priority, they can obtain different bandwidth

reservations. However, with higher average latency,

time-division multiple access is not ideal for high-prior-

ity control traffic. Contention-free routing uses fewer

wires than circuit switching and has minimal buffering

in the routers.

Æthereal concepts
A NoC contains two components: routers and net-

work interfaces. Network interfaces convert the IP view

on communication (protocols, such as AXI—the

Advanced eXtensible Interface—and OCP—the Open

Core Protocol) to the router view on communication

(packets). Here, we focus on routers and, later, briefly

describe network interfaces.

Contention-free routing
Guaranteeing a certain level of performance (in

terms of throughput and latency, for example) for a

communication requires resource reservation (of wires

and buffers) in the NoC. This is accomplished with con-

nections, which are opened (reserving resources), used

for some time, and then closed (releasing resources).

In contention-free routing, or pipelined time-division-

multiplexed circuit switching, a connection reserves

wires and buffers for certain points in time.

A router with arity N (that is, N inputs and N outputs)

uses a slot table to

■ avoid contention on a link,

■ divide up bandwidth per link between connections,

and

■ switch data to the correct output.

Every slot table T has S time slots (rows) and N router

outputs (columns). There is a logical notion of syn-

chronicity: All routers in the network occupy the same

fixed-duration slot. In a slot, s, a network node (that is,

a router or network interface) can read and write at

most one block of data per input and output ports,

respectively. In the next slot, (s + 1) modulo S, the net-

work node writes the read blocks to their appropriate

output ports. Blocks thus propagate in a store-and-for-

ward fashion and cannot deadlock. The latency that a

block incurs per router equals the duration of a slot, and

the slot reservations guarantee bandwidth in multiples

of block size per S slots.

The slot table entries map outputs to inputs for every

slot: T(s, o) = i, which means that blocks from input i (if

present) proceed to output o at each s + kS slot; k ∈ N.

An entry is empty when there is no reservation for that

output in that slot. There is no contention, by construc-

tion, because there is at most one input per output for

each slot. Slot tables optimize away the header that

specifies the path to the destination; as a result, GS

blocks contain only data, and NoC efficiency improves.

Figure 1 illustrates contention-free routing with a

snapshot of a router network and its corresponding slot

tables. The network contains three routers, R1, R2, and

R3, at slot s = 2, which the pointer to the third entry in

each table indicates (we number slots starting from

zero). The size of the slot tables is S = 4, and the figure

depicts only the relevant columns. The three gray

arrows labeled a, b, and c represent connections; the

three circles labeled a, b, and c represent blocks on the

corresponding connections. Router R1 switches block
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b from input i1 to output o2, as slot table T1(2, o2) = i1 indi-

cates. Similarly, R2 switches block a to output o2, and R3

switches block c to output o1.

Contention-free routing depends on a logical notion

of global synchronicity: All routers in the network must

occupy the same fixed-duration slot. Obviously, this syn-

chronicity is implementable with a single, centralized

synchronous clock in combination with techniques like

waterfall clock distribution and synchronous latency-

insensitive design.9 However, the notion of global syn-

chronicity is also implementable in a distributed manner.

For every slot synchronization, each router produces a

token on every output before consuming a token on

every input,10 like a synchronous-data-flow (SDF) actor.11

In other words, each router synchronizes every slot with

all of its neighbors. Thus, all routers always remain in the

same slot, and the NoC will run as fast as its slowest

router. (Many extensions of this basic model are possi-

ble, including multicast, multirate SDF, and nonunit

delays in routers.) The slot values for the slots reserved

for a block along its source-to-destination path increase

by one (modulo S). Assigning slots to connections in the

network is an optimization problem. When designing for

specific applications (connection requirements), design-

ers can use sophisticated off-line global slot allocation

algorithms. The resulting slot assignments are then pro-

grammable at runtime, as we show later. However, if con-

nection requirements are only known at runtime, the

design can use either relatively simple distributed algo-

rithms, such as randomly picking slots, or simple cen-

tralized algorithms (assuming limited runtime

computation resources).

Accordingly, the type of algorithm

used to compute the slot allocation

(design time or runtime, distributed or

centralized) depends on how designers

program the slot allocation into the NoC.

Contention-free GS architecture
The router architecture to implement

contention-free routing is quite simple.

Every input requires a queue for a single

block, which is the minimum size. The

queues connect to a switch, which is

configured at every slot s by reading the

T(s, o) = i entries from the slot table.

Configuration is simpler (that is, faster)

than arbitration because contention

does not occur by construction. GS

blocks never wait, and link-level flow

control between the routers is unnecessary. As a result,

the switch is configurable without considering either

the inputs or link-level flow control.

Best-effort architecture
The best-effort router is a conventional wormhole-

routing, input-queued router. Round-robin arbitration

of the switch occurs at the granularity of three words

(a flit, or flow-control unit). The capacity of the input

queues is a router parameter. We use link-level flow

control between the routers to avoid queue overflow.

BES packets use source routing: The packet header con-

tains the path from source to destination. Each router

removes as many bits (log2N, the base 2 logarithm of

the router arity) from the path as necessary to deter-

mine to which output the packet must go. Because of

the absence of multiple buffer classes, BES packets can

deadlock. We avoid deadlock with appropriate routing

strategies.

Combined GS-BE architecture
The guaranteed performance of GS connections

results from wire and buffer reservations in the NoC. To

give 100% guarantees, these reservations must be for

the worst case, wasting any unused bandwidth. To

increase resource usage, we introduce BES connec-

tions that use all unused bandwidth (unreserved, as

well as reserved but unused, slots). Our combined GS-

BE router model consists of a GS router and a BES

router placed in parallel. The BES router has a lower

priority: A BES flit can use a link only when there is no

GS block on the link.
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Figure 1. Contention-free routing: network of three routers (R1, R2, and R3)

at slot s = 2, with corresponding slot tables (T1, T2, and T3).



Æthereal programming models
The Æthereal NoC, combining GS-BES routers, is pro-

grammable with slot allocations. Typically, however, a

slot allocation occurs on a mode change, which occurs

relatively infrequently. Our Æthereal design flow gener-

ates slot allocations for applications specified at design

time.2 We introduce two programming models: distrib-

uted and centralized. Although each has different advan-

tages, both programming models use identical slot

allocations, and both use the NoC to program themselves;

this way, they avoid introducing an additional communi-

cation infrastructure just to program the network.

Distributed programming model
Our scalable distributed programming model3 does

not require a global view or centralized resources. It uses

BES system packets to set up and tear down GS connec-

tions, much like asynchronous transfer mode (ATM).12

Initially, the slot table of every router is empty. Three

BES system packets are used for configuration: SetUp,

TearDown, and AckSetUp. These packets program the

slot table of every router along their path. The SetUp

packet creates a connection from a source to a desti-

nation and travels downstream (that is, toward the same

destination as the data) along the same path as the data.

When a SetUp packet successfully arrives at the desti-

nation, it indicates it’s a successful connection by

returning an AckSetUp upstream (that is, toward the

data’s source) along any path. When the connection

creation fails, the SetUp packet is dropped and a

TearDown packet is used to remove partial connec-

tions. TearDown packets can travel in either direction

along the data path.

SetUp packets contain the data’s source, the path to

the destination, and slot number s. In every router along

its path, the SetUp packet checks if the output to the

next router in the path is free in the slot indicated by the

packet. If it is free, the router reserves the output in that

slot [T(s, o) = i], and the SetUp packet is forwarded with

an incremented (modulo S) slot. Otherwise, the SetUp

packet is discarded and an upstream TearDown pack-

et returns to the source. The TearDown packets must

use the reverse path (which has already been assem-

bled by the downstream SetUp packet). Thus, every

path must be reversible; this is the only assumption we

make about the network topology. The TearDown pack-

et frees the slot and continues with a decremented slot

number. Downstream TearDown packets work similar-

ly and remove existing connections, starting from the

source. A source has successfully opened a connection

when it receives an AckSetUp; otherwise, it receives a

TearDown. (Many extensions are possible, including

multicast and GS system packets.)

Our distributed programming model uses slot tables

to avoid contention, distributing them over the routers

for scalable and consistent programming. For efficien-

cy, the programming model is pipelined and concur-

rent (multiple system packets can be active in the

network simultaneously, and they can come from the

same source) and distributed (active in multiple

routers). The outcome of programming can depend on

the execution order of system packets, but it is always

consistent. The time required to program the NoC

depends on the load because system packets are BES.

Note that SetUp packets of different connections do

not fail if the connections are set up with conflict-free

slots. All execution orders of SetUp packets then give

the same result, and design-time slot allocations are

deterministically programmable at runtime. This applies

when designers know the applications at design time.

If applications are only known at runtime, then the dis-

tributed programming model is scalable, but imple-

menting an efficient distributed runtime slot allocation

algorithm might not be easy.

Centralized programming model
The distributed programming model is scalable, but

we expect NoCs to be small in the near future. We do

not expect a centralized programming scheme to be a

bottleneck unless reconfiguration rates are high.

Moreover, most current SoCs contain a central root or

configuration process (or processor) that configures the

system. For this reason, the Æthereal NoC also offers a

centralized programming model.4 Recall that the slot

allocations are identical for both models; they differ

only in how the NoC is programmed.

In the distributed programming model, network

interfaces send SetUp packets to determine which slots

they can use for a connection. However, a (central)

third party, such as a root process, could directly pro-

gram the network interfaces with the correct slots. As

noted earlier, each router contains a slot table to

■ allow for distributed and consistent programming

using SetUp packets, and

■ optimize away headers from GS blocks.

We can remove slot tables from all routers by omitting

optimization. However, the network interfaces still

require slot tables to determine when GS data can enter
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the router network. Therefore, we convert GS blocks

without a header to GS packets with a header. GS and

BES packets differ only in their priority in the router.

Note that GS packets never collide because they behave

identically to GS blocks: Their propagation speeds in

the NoC are fixed (one hop per flit delay), and their

departure times in the network interface are equal.

The root process can program a connection from

one network interface (A) to another (B) using abstract

GS or BES ReserveSlot and FreeSlot packets that the net-

work interfaces interpret. To program a network inter-

face, the root sets up a connection to B, programs it, and

removes the connection. The root then similarly pro-

grams A.

An alternative implementation uses memory-

mapped I/Os (MMIOs) and read/write transactions

instead of ReserveSlot and FreeSlot packets.4 The NoC’s

registers are visible in the global memory map(s), just

like other IPs. This style of programming (distributed

shared memory) is conventional, but less abstract than

message passing. (This holds even more strongly in the

distributed programming model, which can also use the

MMIO variant.)

These variations make the programming model less

scalable and flexible. They are, however, closer to cur-

rent practice and, as we shall show, significantly cheap-

er to implement.

Router
architectures and
implementations

We now describe four

router architectures and

implementations that orig-

inate from the contention-

free routing concept. They

vary in the programming

model they support and

hence also vary in cost.

The Æthereal design flow

currently generates only

one type of router, but it is

easy to add the rest.

From the conceptual

point of view, network

interfaces behave like

routers. GS blocks or

packets are injected into

the NoC according to the

network interface’s slot

table; BES packets can

use the link otherwise. (Rădulescu et al. provide more

details on network interfaces.4)

All routers are implemented in a 0.13-µm technology

and contain a 6 × 6 switch. A mesh requires five I/O pairs

and uses one pair internally. The GS queues are one flit

(the minimum), and BES queues are eight flits (fitting the

largest packet). Given the prevalence of 32-bit address

and data sizes, the data path is 34 bits wide, including two

control bits. Except where indicated, area numbers

include scan chains and are after layout with back-anno-

tated timing, assuming worst-case military conditions.

GS-BE distributed programming router
Earlier, we defined a basic GS-BE router. In a GS-BE

router, the GS and BES routers share the switch and links

between them, as Figure 2 illustrates. The GS controller

and BES arbiter must therefore be in lock step, and a GS

block must be a multiple of the BES flit; we choose them

equal in size for low cost and low latency. GS blocks

bypass the header parsing unit (HPU) because they do

not contain a header. The reconfiguration unit (RCU) is

logically a separate module from the router, to which

system packets are routed, just like any other output. An

(N + 1) × (N + 1) router with an RCU effectively becomes

an N × N router. Normal link-level flow control between

the router and RCU ensures that RCU queues (of one flit)

do not overflow, and the RCU programs the slot table
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unit (STU) via an MMIO port. Thus, the

distributed programming model uses the

BES system packets, which are translated

into read/write transactions. Alternatively,

one or more configuration modules can

program the slot table directly using

MMIO using any system-programming

interconnect, such as a bus, token ring, or

NoC.

For an area-efficient GS-BE router, as

we show in Figure 2, we developed dedi-

cated hardware FIFOs to implement the

GS and BES input queues. Figure 3 clearly shows the FIFOs

(GS queue = one GS block; BES queue = eight BES flits),

the SRAM for the slot table on the left (S = 256 slots), and

the RCU with two one-flit queues (on the right). The total

area is 0.24 mm2. The data path operates at 500 MHz, giv-

ing 2 Gbytes/s raw bandwidth for each input and each

output.

To highlight the importance of optimized memory

architectures, we show a naive implementation of the

router (without the RCU) in Figure 4. The same SRAM

for the slot table is visible in the top-left corner, but

we now use registers to implement the GS and BES

queues. One of the six BES queues is shaded in gray

to show that the router area is now dominated (80%)

by the queues. The speed remains unchanged. This

confirms that contention-free GS with

minimal input queues and input queu-

ing for BES is the right choice.

GS-BE centralized programming
router

Figure 5 shows the combined GS-BE

router that supports the centralized pro-

gramming model. As before, the GS and

BES routers are placed in parallel, and

the GS controller and BES arbiter are in

lock step. This time, however, GS blocks

are packets with a header (because the

router does not contain a slot table for

routing); hence, they pass through the

header parsing unit (HPU).

Figure 6 shows the 0.13-mm2, 

500-MHz implementation of the GS-BE

centralized programming architecture.

To exemplify a cost-performance trade-off, we can

combine the switch and the multiplexers in front of it

into a 2N × N switch. This reduces BES congestion but

increases the router area to 0.175 mm2.

GS centralized programming architecture
The architecture of a GS-only router with centralized

programming equals that of a GS-BE router with central-

ized programming, without the dashed boxes and lines
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of Figure 5. The GS-only router architecture omits BES

queues, (de)multiplexers, and link-level flow control.

The arbiter becomes nothing more than a simple con-

troller, and the flit size reduces to one word. As a result,

the router is very small (0.033 mm2) and fast (1 GHz), giv-

ing 4 Gbytes/s raw bandwidth for each input and each

output (after synthesis). We have omitted the layout

because it uses only standard cells and gives no archi-

tectural insights.

Router implementation overview
Table 1 gives an overview of the different router

implementations. For each implementation, the table

shows the service class (GS, BES, or both), supported

programming model, number of effective inputs and

outputs, and switch size (an architectural parameter).

It also includes area (in square millimeters for a 

0.13-µm technology) and frequency (megahertz).

Comparing the data, we can conclude that the GS-

BE combination is relatively expensive. The GS-only

NoC, however, is attractive: It provides twice the per-

formance for a quarter of the area. But if we use the GS-

only NoC even for BES traffic, we might need some

additional GS routers. The trade-off then is the number

of global inter-router wires (larger with GS only; small-

er with combined GS-BE) versus area (smaller with GS

only; larger with combined GS-BE). Thus, Table 1 shows

that a system architect can trade off the desired pro-

gramming model, performance, and cost to achieve a

balanced solution for the SoC as a whole.

OF THE FOUR ROUTER ARCHITECTURES and imple-

mentations, the two ends of the spectrum are the GS-BE

router with distributed programming and system pack-

ets, and the GS router with centralized programming

and distributed shared memory. The former is scalable

and future proof, whereas the latter is faster, cheaper to

implement, and closer to current practice. ■
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