
A Design Flow for Application-Specific Networks on Chip with Guaranteed
Performance to Accelerate SOC Design and Verification

Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago González Pestana,
Andrei R̆adulescu, and Edwin Rijpkema

Philips Research Laboratories, Eindhoven, The Netherlands

Abstract
Systems on chip (SOC) are composed of intellectual property

blocks (IP) and interconnect. While mature tooling exists to design
the former, tooling for interconnect design is still a research area.
In this paper we describe an operational design flow that gener-
ates and configures application-specific network on chip (NOC) in-
stances, given application communication requirements. TheNOC

can be simulated in SystemC andRTL VHDL . An independent per-
formance verification tool verifies analytically that theNOC in-
stance (hardware) and its configuration (software) together meet
the application performance requirements. The ÆtherealNOC’s
guaranteed performance is essential to replace time-consuming
simulation by fast analytical performance validation. As a result,
application-specificNOCs that are guaranteed to meet the appli-
cation’s communication requirements are generated and verified
in minutes, reducing the number of design iterations. A realistic
MPEG SOCexample substantiates our claims.

1 Introduction
A SOC is naturally composed of computation and storage ele-

ments (intellectual property blocks orIP) that are interconnected
by communication elements (busses, networks on chip orNOC). In
this paper, we focus onNOC interconnects because of their modu-
larity, scalability, and other advantages for largeSOCs.

Mature tooling exists to design individualIP, such asRTL syn-
thesis and processor synthesis. Moreover, extensiveIP re-use (of
memories, processors, and application-specific blocks) is com-
mon practice. In contrast, an interconnect is specific to aSOC

because the communication requirements depend on the composi-
tion of IP, which is application specific. Its design costs cannot be
amortised over multipleSOCs, because it cannot be re-used whole.
Tools for NOC synthesis are therefore essential for fast and effi-
cientSOCdesign.These tools depend on the modularity ofNOCs;
i.e. (application-specific)NOCs are composed of two re-usable
parametrised components: routers and network interfaces (NI).

In this paper we describe our design flow to dimension and gen-
erate application-specificNOC instances, given the communication
requirements of the application. TheNOC hardware (router and
NI topology), and theIP port to NI port mapping are described in
XML , which are translated to synthesisableRTL VHDL , and to Sys-
temC. Minimum buffer sizes can also be computed. EveryNOC

instance is programmable, and its configuration (software) is gen-
erated inXML format for SystemC andVHDL simulation, and in C
format for embedded processors in theSOC. VHDL simulation is
bit and cycle-accurate, and SystemC transaction-level simulation
is flit-accurate. IfIP are not yet available for simulation, traffic
generators are used that mimic their communication behaviour, as
specified in the application communication requirements. A pow-
erful new element in our design flow is performance verification,

described below.

Impact of guaranteed NOC services on design flows
One of the major challenges inSOC design isensuring that

the SOC fulfills the (real-time) application requirements under all
circumstances, such as video throughput and latency for set-top
boxes, or packet loss and throughput for network processors. As-
suming theIPs have the right performance (operations per second,
storage capacity, etc.), we must generate aNOC with the right per-
formance. We will show that using aNOC with guaranteed services
(such as minimum throughput, maximum latency and jitter, etc.)
as opposed to a best-effortNOC has important benefits for a design
flow. In particular, this results in a fundamental difference in how
performance is validated.

Using aNOC with best-effort services, any method can be used
to generate aNOC. Then, theNOC performance must be validated
by simulating the completeSOC (i.e. NOC and IPs) because the
behaviours ofIPs andNOC may be interdependent and influence
each other. Simulation of a single trace is relatively slow, and the
number of traces is huge. Therefore, given that not all possible
traces can be simulated, no 100% guarantee can be given that per-
formance requirements are met. Moreover, the performance ob-
served in the simulated traces and the worst-case performance of a
system may differ substantially, which means that adding a “safety
margin” (e.g. sizing a buffer to twice the maximum observed dur-
ing simulation) is not safe (e.g. see Section 3.6).

Only analysis can cover all cases. However, the distributed
arbitration in NOCs often leads to statistical performance mod-
els [1,9], which offer no guarantee that performance requirements
are always met.1 NOCs with guaranteed servicestake provisions
in their architectures to offer connections with guaranteed per-
formance, such as absence of data loss, minimum throughput,
and maximum latency. This enables analytical reasoning about
NOC performance. Examples are Æthereal [6, 8], Nostrum [14],
aSOC [13], using time-division-multiple-access (TDMA ) schemes,
and [5,12] using (virtual)-circuit-switching schemes.

NOC communication guarantees have several positive effects
on the design flow. First, allIPs and theNOC are decoupled [19],
meaning that the communication behaviour of oneIP cannot affect
that of otherIPs. As a result, they can be designed and validated
independently (compositionality). (In contrast to best-effortNOCs
where all IPs andNOC have to simulated together.) Second, the
NOC performance model can be used to generate an application-
specificNOC that meets the communication requirements under all
circumstances (correct by construction). Third, the performance of

1With 99.9% of packets meeting their required service [1], for every
high-definition video frame 2000 pixels are too late. Delayed control traffic
(e.g. programming aDMA engine for every 100Hz frame) can have much
larger impact, and would occur every 10 seconds.

1



any givenNOC (hand made, or generated by a tool) can be analyt-
ically verified to fulfill application requirements or not, instead of
using simulation. As a result, verification time is shortened, and
fewer design cycles are necessary. However, the use of guaranteed
services relies on the explicit description of the communication re-
quirements (or behaviour) of theIPs. This information is normally
already available as part of the specification ofSOC.

Overview
In this paper we describe a design flow that addresses the two

problems that we identified above: the need for tools to quickly
and efficiently generate application-specificNOCs, and the require-
ment forSOC andNOC performance validation. In Section 2 we
describe the prerequisites for ourNOC design flow. In Section 3
we define the design flow and explain its inputs (e.g. application
requirements), outputs (NOC hardware and software, and resulting
performance), and details of the individual tools (generation, con-
figuration, verification, and simulation). We apply our design flow
in Section 4, where we generate severalNOCs for a MPEG SOC.
For 16 IPs and a single task graph containing 21 guaranteed con-
nections, the tools automatically dimension and generate the Sys-
temC andVHDL for a NOC with 3 routers and 6NIs, and 21 traffic
generators and their mapping. Including the configuration, buffer
sizing and performance verification, this takes less than a minute.
We review related work (Section 5), and conclude in Section 6.

2 NOC Design Flow Prerequisites
In this section we first describe the prerequisites for a design

flow, independent of theNOC services.
To be able to generate an application-specificNOC, the NOC

must be modular, i.e. be constructed of simpler, re-usable
parametrised components: the router and network interface (NI).
At design time, these components must be instantiated and con-
nected in an appropriate topology. Moreover, theIP ports must be
connected to particularNI ports (mapping). The result is a struc-
tural description (hardware) of theNOC. The router andNI of the
ÆtherealNOC have been documented in [17,18], here we mention
only the relevant features. For the purposes of the design flow,
the router is parametrised by its arity (number of input and output
ports), and the best-effort queue sizes. Here, we fix the router link
width to 32 bits. TheNI is parametrised by the number of ports (to
which IP ports can be connected, as specified in the mapping), the
number of connections per port, and the buffer sizes per connec-
tion. The type of theIP andNI ports (AXI , variousDTL profiles,
their word width, etc.) is also a parameter, but kept fixed in this
paper. TheNOC as a whole is parametrised by the size of the slot
table, and by the operating speed (500MHz in all examples, which
is the speed of the router andNI implementations).

All instances of the ÆtherealNOC are(re)configurable at run
time. This means that theNIs can be (re)programmed at run-time,
using standard memory-mappedIO ports on theNOC, to support
a variety of connections [17]. (Routers are stateless and require
no configuration.) Within theNOC’s hardware limits (number of
connections per port, slot table size, credit counter bit widths, etc.)
connections can be configured with different (guaranteed) prop-
erties, such as throughput and latency, by programming the path
from master to slave, the number of slots and flow-control cred-
its, etc. A configuration for a use case, is a list ofNOC memory
registers and their values.

The ÆtherealNOC offers both best-effort and guaranteed ser-
vices. The design flow described in this paper can be used for any

4

NOC generation

NOC configuration

NOC performance
verification

SystemC &
RTL VHDL

NOC simulation

topology.xml,vhdl

gt-perf.xml,html gtbe-perf-sysc.xml,html

constraints.xml
communication.xls
communication.xml

mapping.xml,vhdl

gtbe-perf-vhdl.xml,html

configuration.xml,c

tg.xml,vhdl

tg generation

ip.xml

RTL synthesis
& back-end

sm
al

le
st

 m
es

h 
lo

op
bu

ff
er

 s
iz

in
g

Figure 1. The Æthereal NOC Design Flow

mix of services. However, the advantage ofNOCs with guaranteed
services, as discussed at length in the introduction, is that the they
implement router andNI arbitration schemes that allow analytical
reasoning about the performance of guaranteed connections inde-
pendently of the behaviour of other connections. This prerequisite
is essential for correct-by-constructionNOC generation and con-
figuration, as well as compositionalNOC performance verification
(of anyNOC, hand-made or generated), see Sections 3.3 to 3.5.

The final prerequisite for a design flow is the description of
the application communication requirements. It is not possible
to generate aNOC without knowing what the requirements of the
application using it will be. This will be described in Section 3.1
because this information is given as an input to the design flow.

The prerequisites are therefore: a modularNOC offering guar-
anteed services with parametrised components (router,NI), and a
description of the application requirements. The next section uses
these foundations to offer aNOC design flow.

3 NOC Design Flow
Figure 1 shows theNOC design flow, which is fully imple-

mented. Input files are underlined and shown at the top. The
tools that we will discuss are shown by boxes; for simplicity some
format conversion tools are not shown (in particular xls→XML ,
XML→VHDL , andXML→HTML ). Below, we discuss each of the
files and tools in turn. Although a major motivation forNOCs is
their promise to improve back-end issues, such as global timing
closure, we omit details of the “RTL synthesis and back-end.”

First, however, note thatNOC generation and configuration are
interdependent, and part of one complex optimisation problem
(find topology, mapping, and throughput assignments that min-
imise the number of routers,NIs, buffer sizes, and latencies). If
this is done correctly (by construction), no performance verifica-
tion and simulation is required (for guaranteed connections). Sim-
ulation is still useful, e.g. to check if the communication behaviour
of IPs has been correctly characterised. With guaranteed services,
this can be checked independently for every connection.

Nonetheless, our design flow has been split into separate tools
(generation, configuration, verification) for several reasons. First,



breaking the design flow in smaller steps, simplifies steering or
overriding heuristics used in each of the individual tools, enhanc-
ing user control. Second, it reduces the complexity of optimisa-
tion problem, and simpler, faster heuristics can be used. Higher-
level optimisation loops involving multiple tools can then be easily
added, such as the “smallest mesh loop,” cf. Section 3.3. Third,
parts of the flow can be more easily customised, added, or replaced
by the user to tailor the flow or improve its performance. For ex-
ample, mesh XY routing can be replaced by load-balancing turn-
prohibiting routing. Finally, redundancy in the sense of checking
what should be generated automatically and correct by construc-
tion, such as simulation and performance verification (of guaran-
teed connections), minimises impact of potential programming er-
rors, and acts as a safety net when allowing the user to manually
create or modify intermediate results.

The design flow is very simple for the user. It is based on a
makefile with few targets corresponding to the major activities:
generate, configure, gtverify, simsystemc, and simvhdl. All files
are inXML , which is human readable, but also robust and extensi-
ble. The user can use the flow infully automatic mode(supply only
the required underlined input files), ormanually create or modify
selected intermediate files (topology.xml, mapping.xml, configu-
ration.xml, tg.xml). In case of manual intervention the remainder
of the flow works automatically. For example, an automatically
generatedNOC can be configured manually, yet still have its per-
formance automatically verified. The input files contain all in-
formation (options, settings, etc.), for deterministic batch-mode
replay of results.

3.1 Specification of the Application Requirements
The starting point of the design flow is the description

of the application’s communication requirements (communica-
tion.xls,xml). An application consists of a number of task graphs,
or use cases. Each of these contains a number of tasks, to be exe-
cuted in hardware or software, using storage, and communicating
using theNOC. For the design flow only the communication is rel-
evant, i.e. which ports on whichIPs communicate with each other.
Figure 2 shows an example specification in Microsoft Excel. This

Figure 2. MPEG Application Communication Specification.

is the de facto format for design documentation, and readily avail-
able from SOC designers. The Excel document is translated to
XML , which the user can also write directly. An Excel document
represents a single application, and each worksheet represents a

single use case. (Currently, multiple use cases are entered as in-
dependent applications.) A use case is specified as a list of con-
nections. A connection specifies a communication between a mas-
ter port and a slave port, the required (minimum) bandwidth, the
(maximum) allowed latency, and burst size for read and/or write
data, and the traffic class (best-effort or guaranteed).

3.2 Specification of the IP
The second input file is the specification of the architecture

around theNOC. The ip.xml file, an example of which is shown in
Figure 3, contains a list of allIPs connected to theNOC and theIP

ports. Each port has a number of attributes, such as protocol (AXI ,
variousDTL profiles), and data word width. (Currently, all ports
are of typeDTL MMIO (memory-mappedIO) or MMBD (memory-
mapped block data), with 32-bit data words.) The ip.xml file is
used to generate the right protocol-conversion shells forNIs [17].

<architecture id="MPEG">
<IP id="display">

<initiator id="p1" protocol="MMBD" word="32"/>
</IP>
<IP id="decoder">

<initiator id="interp" protocol="MMBD" word="32"/>
<initiator id="mc" protocol="MMBD" word="32"/>
<initiator id="fifo" protocol="MMBD" word="32"/>

</IP>

Figure 3. Part of the IP description of MPEG example.

3.3 NOC Generation and IP Mapping
The first tool in the design flow is theNOC dimensioning and

generation andIP mapping tool. It uses the application com-
munication specification communication.xml, theIP specification
ip.xml, and theNOC generation constraints constraints.xml. The
tool defines thedesign-time hardwaretopology.xml: the number
of routers, network interfaces, and topology. Parameters are spec-
ified for the NOC (flit duration, number of slots inTDMA table),
for each router (arity, best-effort buffer size), and for eachNI in-
stance (number ofNI ports, connections per port, buffer sizes per
connection). To reduceNOC cost, all routers andNIs are dimen-
sioned precisely for the application, giving many different router
andNI instances perNOC. Modular router andNI architectures are
therefore essential. Figure 4 shows a partial topology.xml.

<AENetwork id="MPEG" flitClk="6" slots="128">
<AERouter id="R0000" iq="8">

<AEPort id="NI" link="L_0000" />
<AEPort id="South" link="L_0000_0100" />
<AEPort id="West" link="L_0000_0001" />

</AERouter>
<AENI id="NI0101">

<AEPort id="Router" link="L_0101" />
<SlaveP id="CONFIG" conn="1" iq="4" oq="4"/>
<MasterP id="display.p1" conn="1" iq="40" oq="21"/>
<MasterP id="decoder.mc" conn="1" iq="40" oq="21"/>
<MasterP id="decoder.fifo" conn="1" iq="40" oq="21"/>
...

</AENI>

Figure 4. Part of the Topology Description of MPEG example.

A synthesisableRTL VHDL description of theNOC is also pro-
duced, in a form compatible with the standard Philips back-end
design flow. An area estimate of theNOC is given (using a model
calibrated with existing router andNI implementations [17,18]).

The buffers per connection in theNIs are dimensioned to avoid
stalling of data by hiding the round-trip delay of credits for loss-
less connections, and to compensate for difference in master and



slave burst sizes. Although they are part of the hardware, they
are not computed at this point in the design flow, because they de-
pend on the configuration, which is computed later. As an example
of the flexibility of the design flow, for guaranteed connections,
the buffer sizes computed by theNOC performance validation tool
can be back-annotated in the topology.xml file, as indicated by the
dashed arrow labelled “buffer sizing” in Figure 1.

A second output is the mapping.xml file, containing the as-
signment of IP ports to NI ports. The mapping has a signif-
icant impact on the size (i.e. cost) of theNOC and its per-
formance (e.g. Table 1). The constraints.xml file allows the
user to influence the mapping by specifying if sets of ports
must be mapped on the sameNI or must be mapped on dif-
ferent NIs, to reflect e.g. floor-planning constraints. For ex-
ample, <SameNI> <Module id="display"> <Module
id="decoder" port="mc"/> </SameNI> places all IP

ports of the displayIP, and the decoder’s mc port of Figure 4 on
the sameNI.

The NOC topology can be computed in three modes: either a
mesh of given size is generated with aIP mapping, or the small-
est mesh andIP mapping accommodating the application are gen-
erated, or a user-defined topology andIP mapping can be used.
Automatic shortest-path routing can be used in all cases, and XY
routing also in the first two cases. The computation of the smallest
mesh andIP mapping for the given application, depends, like the
buffer computation, on the configuration (e.g. the heuristic slot
allocation may fail). The design flow therefore implements the
automatic loop (the dashed arrow labelled “smallest mesh loop” in
Figure 1) as the makefile target “minmesh.” Determining the maxi-
mum slot table size, which is a hardware constant but also depends
on the configuration, can be computed with a similar loop.

Briefly, the mapping algorithm works as follows, for both best-
effort and guaranteed connections. It balances theIP port band-
widths over theNIs, clusteringIP ports that communicate heavily
on the sameNI, and then minimising the distance (number of hops)
between heavily communicatingNIs, taking care not to overload
any link. Packetisation overhead and latency constraints are ig-
nored at this point.

3.4 NOC Configuration

The generation and mapping tool produces the design-time
hardware (topology.xml and mapping.xml). Using these, theNOC

configuration tool computes therun-time softwarethat contains all
the information to program the hardware. The configuration.xml
file contains the values for all programmable registers of theNIs
(the routers are stateless), such as connection identifiers, and for
each connection, the path from master to slave port, and flow con-
trol credits. For connections with guaranteed throughput or la-
tency (as specified by the user in communication.xls), a slot allo-
cation must be determined (i.e. each hop along the path the slot
increases by one, and at most one connection can use a given slot
at a router [18]).

The configuration algorithm works as follows. For each con-
nection a path is generated, like by the mapping tool (or it can be
supplied by the user). The flow control credits are equal to buffer
sizes. Slots are allocated using a heuristic using a combination of
each connection’s path length and required bandwidth.

Figure 5 shows a partial configuration in (equivalent)XML and
C. Section 3.6 describes how the configuration.xml and configura-
tion.c files are used by the SystemC andRTL VHDL simulations.

<Connection master="decoder.mc" cidm="0"
slave="mem.p2" cids="2">

<Request type="GT" path="3 1 0" credits="33"
slots="22 23 24 25 26 27 28 29 30 31 32"/>

<Response type="GT" slots="7 8 9 10 11 12 13"
path="2 1 0" credits="21"/>

</Connection>

open_connection ("decoder.mc",0,"mem.p2",2,
"GT","22-32","3 1 0",33,
"GT","7-13","1",60);

Figure 5. Part of the MPEG example Configuration (XML and C).
Using the topology and configuration the worst-case and aver-

age energy consumption of theNOC can be estimated [4]. This,
and the area estimate of theNOC, computed from the topology, are
important indicators ofNOC cost. The verification and simulation
steps, discussed below, compute theNOC performance.

3.5 NOC Verification
The rationale for decomposing the design flow into smaller

tools has been given at the start of this section. Thus, the
NOC hardware (topology.xml) and software (configuration.xml)
are computed sequentially, earlier in the design flow. Therefore,
the generation, mapping, and configuration tools must work with
some simplifying assumptions (e.g. thatNI buffers are adequately
sized, ignore latency constraints). As a result, configuration (for
guaranteed connections) may fail for aNOC topology and map-
ping, and latency constraints may not be met for a configuredNOC.

For best-effort connections, the latter can only verified by sim-
ulation (next section). For guaranteed services, on the other hand,
Æthereal’sTDMA performance model can be analysed mathemat-
ically, and throughput, latency, and buffer sizes can be computed
for the worst case [6]. Therefore, although the generation and con-
figuration tools do not generateNOCs that are correct by construc-
tion for the specified application, the final verification step checks
whether theNOC topology and configuration are guaranteed to ful-
fill the application requirements or not.Any Æthereal topology
and configuration, automatically or manually generated, can be
verified against its application requirements.

Given the topology.xml, mapping.xml, configuration.xml files
the verification tool computes the worst-case (minimum) through-
put, (maximum) latency, and (minimum) buffer sizes per con-
nection. These are compared to the requirements (communi-
cation.xml) and shown in an intuitive colour-coded table (gt-
perf.xml,html), cross-linked with communication.xml,html (Fig-
ure 6). Green entries meet the requirements, red ones do not. Yel-
low buffer sizes meet the requirements but are overdimensioned. It
is possible (and, in fact, the norm) to automatically back-annotate
the computed buffer sizes in the topology.xml file, as can be seen
from the zero slack in the figure.

Figure 6. Performance Verification Output of MPEG example.

The verification checks each GT connection independently.



This compositionality is a useful consequence of Æthereal’sTDMA

model. The model is also relatively simple to reason about [6]. As
an example, a lossless (flow-controlled) request-only connection
(e.g. writes without acknowledgements) consists of a outgoing
(master→slave) channel for requests and a return (slave→master)
channel for flow control. First, compute the amount of write data
that can be sent in one slot table revolution. Then compute the
worst-case duration to send a complete burst (this may take sev-
eral slot table revolutions, and includes the worst-case wait for
the initial slot). Add to this the latency in the routers (flit delay
times the length of connection’s path). As a complicating fac-
tor, the availability of request credits must be taken into account:
this depends on the bandwidth and latency of the return channel,
computed similarly. The sizes of the buffers at the master and
slave for both outgoing and return channels are derived from the
above computation. Note that to guarantee throughput or latency
for a connection with only request transactions, the bandwidth and
buffer sizes and credits must be sufficient on both the outgoing and
return channels. Other types of connections are verified similarly.

3.6 NOC Simulation
The verification tool works for guaranteed connections only,

and not for best-effort connections. Moreover, it computes worst-
case throughput and latency numbers and buffer sizes, not actual or
average figures. To assess the average performance of both guar-
anteed and best-effort connections for a particular execution trace
two types of simulation are supported:RTL VHDL and SystemC.
The former is a bit and cycle-accurate simulation of theRTL VHDL

implementation. In the SystemC simulation, theNOC is simulated
at the flit level, and theIP-NI interface is at the transaction level.
The SystemC simulation is orders of magnitude faster than the
VHDL simulation.

Simulation must be flexible to cope with automatically gener-
ated and configuredNOCs. For this reason, our SystemC simula-
tion is based onXML files for topology, mapping,NOC configu-
ration, andIP configuration,to enable fast run-timeNOC and IP

instantiation and configuration[7].
The configuration is produced as anXML and C file (Figure 5).

The XML file is used by the SystemC andVHDL simulation. The
ÆtherealNOC is configured through memory-mappedIO (MMIO )
NOC ports (theid="CONFIG" port in Figure 4), using theNOC

itself [17]. In theVHDL simulation a behaviouralIP configures the
NOC, based on configuration.xml. The SystemC simulation can
use configuration.xml directly, or model theMMIO programming.

The configuration.c file is intended to be run on an embed-
ded processor connected to theNOC. The C file contains a func-
tion per use case, e.g.configure usecase one() , that
(re)programs theNOC at run-time, using theMMIO port of pro-
cessor’sNI. For every connection an Æthereal library function
(re/open/close connection ) is called with the appropri-
ate parameters (e.g. path, slots, credits; see Figure 5).

Traffic Generation and Measurements
SOC simulation requires that allIPs are available for simula-

tion, as a model (e.g. at a behavioural or cycle-accurate level) or
as an implementation. Early in the design cycle, this is usually not
the case. To enable earlySOCsimulation to evaluate theNOC per-
formance, our design flow producesXML -configurable SystemC
andVHDL traffic generators, see Figure 1. AllIP ports of IPs for
which no model or implementation is available, are modelled with

traffic generators. The traffic is generated according to theIP re-
quirements as given in the communication.xls file. Traffic gen-
erators can be replaced byIP models, as these become available.
At all times, however, a completeSOC can be simulated, in both
SystemC andVHDL .

Figure 7. SystemC Simulation Output of MPEG example.

The traffic generators also automate the measurement of
throughput and latency of all connections in theNOC, for
both SystemC andVHDL , and NI buffer statistics (SystemC
only). The SystemC and/orVHDL results are reported in colour-
coded tables (gtbe-*-perf.xml,html), cross-linked with commu-
nication.xml,html (Figure 7). Like the verification output (Sec-
tion 3.5) green entries meet the requirements, and red ones do
not. Due to simulation artifacts (random number generators in traf-
fic generators, run-in effects due to insufficiently long simulation,
etc.) a guaranteed connection may not use its required bandwidth
(e.g. write data of connection 0). Note that this is due to the traffic
generators, not theNOC: the bandwidth and latency of guaranteed
connections is available, but it is not used.

Note that using simulation as a basis for e.g. buffer dimension-
ing can lead to buffers that are too small. Analytical performance
evaluation shows that connection 3’s write data requires a buffer
of 54 words, but the maximum filling during simulation is only 8.
Overdimensioning all buffers by the same factor of7 = d54/8e,
would lead to buffers that are up to 6 times too large (7x24 instead
of 28, for connection 3), doubling theNOC size (“simulation,” in
Table 1). Of course, without verification, the factor 7 would have
to be guessed in the first place.

4 MPEG Codec Case Study
We applied the design flow to an existingMPEG codecSOC

with 16 IPs. The architecture uses a single externalSDRAM with
three ports to implement all communication betweenIPs. We
specified the read and write bandwidths and latencies of the 21
guaranteed-throughput connections (Figure 2). Running the de-
sign flow in fully automatic mode(generating the minimum mesh
and smallest slot table, with back-annotated minimum buffer sizes)
resulted in a 2x3 mesh with 128 slots, with a total estimated area of
2.35 mm2 in a 0.13 micron process, in minutes (cf. Table 1). Fig-
ures 4-7 refer to thisNOC instance. For comparison, a naive map-
ping (oneIP perNI) is almost double the size. “Simulation” shows
that using simulation and a “safe” overdimensioning factor to de-
termine buffer sizes (see Section 3.6), is more than twice as big.
The average worst-case write latency per connection, computed by
the performance verification tool, is more or less constant.

To highlight the scope formanual intervention, we also op-
timised theNOC. We explored several differentIP-NI mappings
to improve theIP distribution and clustering, to reduce the con-
straints on the routing and slot table configuration. A 21% smaller



Table 1. Comparison of MPEG NOCs.
NI router total area avg wc

generation mesh slots area area area diff latency
automatic 2x3 128 1.83 0.51 2.35 ref 1570 ns

naive 3x6 128 2.17 2.32 4.49 +91% 1583 ns
simulation 2x3 128 4.61 0.51 5.13 +118% 1570 ns
optimised 3x1 8 1.51 0.35 1.86 -21% 399 ns

mesh (3x1, 1.86 mm2) then suffices. Despite the resulting band-
width overallocation, it also reduces the slot table (8 slots), and the
latency (almost four-fold reduction of average worst-case write la-
tency) and buffer sizes (compare Figures 6 and 8). The minimum
buffer sizes were computed by the verification tool and automati-
cally back-annotated in the custom topology.

Figure 8. Performance Verification of Optimised MPEG.

The case study shows that theNOC design flow work gener-
ates aRTL VHDL implementation of aNOC, which has a guaran-
teed performance for theMPEG codecSOC. Retrofitting aNOC

to an existingSOC architecture is possible, although for example,
the single external memory underutilises the parallelism offered
by NOCs. It also shows that manual optimisation gives worthwhile
improvements for a smallSOC. We are currently evaluating the de-
sign flow for a very largeSOC, and will see if manual optimisations
are still feasible (manyIPs and many use cases) and significant.

5 Related Work
QNoC’s design flow [2] is similar to ours, but differs in rely-

ing on system simulation to verifySOCperformance, expressed as
statistical properties. They first generate theNOC topology gener-
ation andNI-IP mapping, followed by balancing bandwidth in the
NOC, whereas we perform both at the same time.

XpipesCompiler [11] and NcGEN [3] generate optimised Sys-
temC (andVHDL for NcGEN) descriptions for manually specified
NOC topologies, which can be simulated together with traffic gen-
erators for performance validation.

[10, 15, 16] synthesiseNOCs, mapIPs, and/or configureNOCs
based on bandwidth requirements and link bandwidths. However,
when using worm-hole routing, the capacity of the links is not in-
dependent, especially in the presence of links of different speeds.
(e.g. a packet spanning a slow and a fast link will reduce the ca-
pacity of the fast link, in the absence of virtual-channel buffering.)
Applying these sophisticated synthesis and mapping algorithms
to NOCs with guaranteed services, requiring the inclusion ofNOC

configuration, will be very beneficial for design flows, and speed
up SOCandNOC design.

6 Conclusions
We have described aflexible operational design flow to gener-

ate application-specific network-on-chip (NOC) instances and con-
figurations. The application’s requirements are specified in Excel,

which is readily available from system architects. Application-
specificNOC instances, consisting of routers and network inter-
faces (NIs) are automatically dimensioned and generated. AnIP-NI

port mapping is also computed. The result is SystemC and synthe-
sisableRTL VHDL , compliant with the Philips back-end flow.

The NOC hardware isrun-time (re)programmableto support
different task graphs. The configuration (software) to program the
network is generated inXML (for SystemC andVHDL simulations)
and in C for embedded processors that program theNOC using
memory-mappedIO. TheNOC hardware and configuration can be
simulated in SystemC andVHDL , using custom traffic generators.
These mimic theIP behaviour, as specified in the application re-
quirements; thus, theSOCcan be simulated at all times.

A unique feature of our design flow is thefast automatic per-
formance verification: given theNOC hardware and configuration,
the guaranteed minimum throughput, maximum latency, and mini-
mum buffer sizes are analytically computed for all guaranteed con-
nections. The guaranteed communication services of Æthereal are
essential to achieve this. AnyNOC instance and configuration can
be verified, whether automatically or manually created. Analyti-
cal performance verification eliminates lengthy simulations for the
guaranteed connections, and hence reduces verification time, lead-
ing to fewer design cycles.

Using the design flow we automatically generated and verified
a NOC for an MPEG codecSOC (2x3 mesh, 2.35 mm2 in 0.13 mi-
cron) in minutes. The design flow’s flexibility was demonstrated
by manually optimising aNOC, leading to a 21% area reduction.

Acknowledgement. S. González Pestana is supported by Marie
Curie FellowshipIST-GH-99-80002-02.

References
[1] E. Bolotin et al. QNoC: QoS architecture and design process for network on

chip. J. of Systems Architecture, 50(2–3):105–128, 2004.
[2] E. Bolotin et al. Automatic hardware-efficient SoC integration by QoS net-

work on chip. InICECS, 2004.
[3] J. Chan et al. NoCGEN: a template based reuse methodology for networks on

chip architecture. InProc. Int’l Conference on VLSI Design, 2004.
[4] J. Dielissen et al. Power measurements and analysis of a network on chip.

Submitted, 2004.
[5] T. Felicijan et al. An asynchronous on-chip network router with quality-of-

service (QoS) support. InSoCC, 2004.
[6] O. P. Gangwal et al. Building predictable systems on chip: An analysis of

guaranteed communication in the Æthereal network on chip. In P. van der
Stok, editor, Dynamic and Robust Streaming In and Between Connected
Cnsumer-Electronics Devices. Kluwer, 2005.

[7] S. Gonźalez Pestana, et al. Cost-performance trade-offs in networks on chip:
A simulation-based approach. InDATE, 2004.

[8] K. Goossens et al. Guaranteeing the quality of services in networks on chip.
In A. Jantsch and H. Tenhunen, editors,Networks on Chip. Kluwer, 2003.

[9] P. Guerrier.Un Ŕeseau D’Interconnexion pour Systémes Int́egŕes. PhD thesis,
Universit́e ParisVI , Mar. 2000.

[10] J. Hu et al. Energy-aware communication and task scheduling for network-
on-chip architectures under real-time constraints. InDATE, 2004.

[11] A. Jalabert et al. XpipesCompiler: A tool for instantiating application specific
networks on chip. InDATE, 2004.

[12] N. Kavaldjiev et al. A virtual channel router for on-chip networks.SoCC’04.
[13] J. Liang et al. aSOC: A scalable, single-chip communications architecture. In

PACT, 2000.
[14] M. Millberg et al. Guaranteed bandwidth using looped containers in tempo-

rally disjoint networks within the Nostrum network on chip. InDATE, 2004.
[15] S. Murali et al. SUNMAP: A tool for automatic topology selection and gen-

eration for NOCs. InDAC, 2003.
[16] A. Pinto et al. Efficient synthesis of networks on chip. InICCD, 2003.
[17] A. Rădulescu et al. An efficient on-chip network interface offering guaranteed

services, shared-memory abstraction, and flexible network programming. In
DATE, 2004.

[18] E. Rijpkema et al. Trade offs in the design of a router with both guaranteed
and best-effort services for networks on chip. InDATE, 2003.

[19] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through
communication-based design. InDAC, 2001.


