A Unified Approach to Constrained Mapping and Routing
on Network-on-Chip Architectures

Andreas Hansson
Dept. of Information Technology
Lund University, Box 118, 221 00

Lund, Sweden

ABSTRACT

One of the key steps in Network-on-Chip (NoC) based design
is spatial mapping of cores and routing of the communication
between those cores. Known solutions to the mapping and
routing problem first map cores onto a topology and then
route communication, using separated and possibly conflict-
ing objective functions. In this paper we present a unified
single-objective algorithm, called Unified MApping, Routing
and Slot allocation (UMARS). As the main contribution we
show how to couple path selection, mapping of cores and
TDMA time-slot allocation such that the network required
to meet the constraints of the application is minimized. The
time-complexity of UMARS is low and experimental results
indicate a run-time only 20% higher than that of path se-
lection alone. We apply the algorithm to an MPEG decoder
System-on-Chip (SoC), reducing area by 33%, power by 35%
and worst-case latency by a factor four over a traditional
multi-step approach.

Categories and Subject Descriptors

B.4.3 [Input/Output and Data Communications]: In-
terconnections— Topology

General Terms

Design, Algorithms, Performance

Keywords

System-on-Chip, Network-on-Chip, Quality-of-Service, Map-
ping, Routing

1. INTRODUCTION

Systems-on-Chip (SoC) grow in size with the advance of
semiconductor technology enabling integration of dozens of
cores on a chip. The continuously increasing number of cores
calls for a new communication architecture as traditional ar-
chitectures are inherently non-scalable, making communica-
tion a bottleneck [1, 21].

System architectures are shifting towards a more
communication-centric methodology [21]. Growing SoC com-
plexity makes communication subsystem design as important
as computation subsystem design [2]. The communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+ISSS’05, Sept. 19-21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

Kees Goossens
Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA
Eindhoven, The Netherlands

hansson@natlab.research.philips.com kees.goossens@philips.com

Andrei Radulescu
Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA
Eindhoven, The Netherlands

andrei.radulescu@philips.com

infrastructure must efficiently accommodate the communi-
cation needs of the integrated computation and storage ele-
ments. In application domains such as multi-media process-
ing, the bandwidth requirements are already in the range of
several hundred Mbps and are continuously growing [17].

Networks-on-Chip (NoC) have emerged as the design
paradigm for design of scalable on-chip communication ar-
chitectures, providing better structure and modularity [1, 3,
7, 21]. Although NoCs solve the interconnect scalability is-
sues, SoC integration is still a problem.

To enable cores to be designed and validated indepen-
dently, computation and communication must be decou-
pled [20]. Decoupling requires well defined communication
services [13]. Service guarantees are essential in many SoCs
as numerous application domains require real-time perfor-
mance [20]. Quality-of-Service (QoS) guarantees enables in-
dependent design and validation of every part of the SoC
by ensuring that real-time application requirements are met
under all circumstances [7].

Creating a NoC-based system with guaranteed services re-
quires efficient mapping of cores and distribution of NoC re-
sources. Design choices include core port to network port
binding, routing of communication between cores and allot-
ment of network channel capacity over time. These choices
have significant impact on energy, area and performance met-
rics of the system.

Existing solutions rely on a multi-step approach where
mapping is carried out before routing [7, 12, 19]. Routing
and mapping objectives do hereby not necessarily coincide.
The routing phase must adhere to decisions taken in the map-
ping phase which invariably limits the routing solution space.
Mapping therefore significantly impacts energy and perfor-
mance metrics of the system [12].

We propose a unified algorithm, called Unified MApping,
Routing and Slot allocation (UMARS), that couples map-
ping, path selection and time-slot allocation, using a single
consistent objective. The time-complexity of UMARS is low
and experimental results indicate a run-time only 20% higher
than that of path selection alone. We apply the algorithm
to an MPEG decoder SoC, reducing area by 33%, power by
35% and worst-case latency by a factor four over a traditional
multi-step approach.

The problem domain is described in Section 3 and formal-
ized in Section 4. The UMARS algorithm, which solves the
unified allocation problem under application constraints, is
described in Section 5. Experimental results are shown in
Section 6. Finally, conclusions are drawn in Section 7.

2. RELATED WORK

QoS routing objectives are discussed in [9, 22] and impli-
cations with common-practice load-balancing solutions are
addressed in [16]. In addition to spatial, temporal character-

istics are included in path selection in [8, 10].

The problem of mapping cores onto NoC architectures is
addressed in [7, 11, 12, 17, 18, 19].

In [11] a branch-and-bound algorithm is used to map cores
onto a tile-based architecture, aiming to minimize energy
while bandwidth constraints are satisfied. Static zy rout-
ing is used in the work. In [12] the algorithm is extended to
route with objective to balance network load.

In [17, 18, 19] a heuristic improvement method is used. An
initial mapping is derived with objectives such as minimiz-
ing communication delay, area or power dissipation. This is
succeeded by routing according to a predefined routing func-
tion. Routing and evaluation is repeated for pair-wise swaps
of nodes in the topology, thereby exploring the design space
in search for an efficient mapping. In [19] the algorithm inte-
grates physical planning and QoS guarantees. Design space
exploration is improved with robust tabu search.

In all these works [11, 12, 17, 18, 19], multiple mapping
and routing solutions are evaluated iteratively to mitigate
the negative effects mapping decisions may have on routing.

A greedy non-iterative algorithm is presented in [7]. Map-
ping is done based on core clustering whereafter communica-
tion is routed by static zy routing.

Known mapping and routing algorithms that incorporate
QoS guarantees [10, 19] assume static communication flows,
where traffic does not vary with input data.

In this work, our methodology unifies the three resource
allocation phases: spatial mapping of cores, spatial routing
of communication, and the restricted form of temporal map-
ping that time-slot assignment on those routes constitutes.
We consider the communication real-time requirements, and
guarantee that application constraints on bandwidth and la-
tency are met. The proposed solution is fundamentally dif-
ferent from [7, 11, 12, 17, 18, 19] in that mapping no longer
is done prior to routing but instead during it. However, we
compare UMARS only to [7], and a more extensive compari-
son with traditional algorithms [11, 12, 17, 18, 19] is of value.

3. PROBLEM DESCRIPTION

We assume that the application is mapped onto cores,
such as processors, coprocessors, DSPs, hardware accelera-
tors, memory blocks, I/O blocks etc. The bandwidth and
latency constraints of the application flows are determined
beforehand by means of static analysis or simulation.

Our problem is to: 1) map those cores onto any given
NoC topology, 2) statically route the communication and 3)
allocate TDMA time-slots on network channels so that ap-
plication constraints are met. Services are provided on the
level of flows where a flow is a sequence of packets being sent
from a source to a destination. Regular, as well as irregu-
lar topologies are supported to enable dedicated solutions,
tailoring the topology to specific needs.

Two important requirements can be identified and the onus
is, in both cases, on the mapping and routing phases. Firstly,
the constraints of individual flows must be satisfied. These
constraints must hence be reflected in the selection of map-
ping, path and time slots such that proper resources are re-
served. Secondly, all flows must fit within the available net-
work resources. Failure in allocating a flow is attributable
to non-optimal previous allocations or insufficient amounts
of network resources. This calls for conservation of the finite
pool of resources, namely the channels and their time-slots.

This paper shows how path selection can be extended to
span also mapping and time-slot allocation. This enables
the aforementioned requirements to be formulated as path
selection constraints and optimization goals.

4. PROBLEM FORMULATION

The application is characterized by an application graph.

Definition 1. An application graph is a directed multi-
graph, A(P,F), where the vertices P represent the set of
cores, and the arcs F represent the set of flows between cores.
More than a single flow is allowed to connect a given pair of
cores and no core is isolated. Each flow f € F is associated
with a minimum bandwidth constraint measured in number
of slots, b(f), and a maximum latency constraint, {(f). Let
s(f) denote the source node of f and d(f) destination node.

To be able to constrain mapping according to physical lay-
out requirements, we group the cores in P and map groups
instead of individual cores. UMARS is thereby forced to
map certain cores to the same spatial location. The map-
ping groups correspond to a partition Pps, of P where the
elements of Py are jointly exhaustive and mutually exclusive.
The equivalence relation this partition corresponds to, con-
siders two elements in P to be equal if they must be mapped
to the same spatial location. The equivalence class of a core
p is hereafter denoted by [p].

NoCs are represented by interconnection network graphs.

Definition 2. An interconnection network graph I is a
strongly connected directed multigraph, I(N,C). The set
of vertices N is composed of three mutually exclusive sub-
sets, Nr, Nn1 and Np containing routers, network interfaces
(NI) and core mapping nodes as shown in Figure 1. The latter
are dummy nodes to allow unmapped cores to be integrated
in the interconnection graph. The number of core mapping
nodes is equal to the number of core subsets to be mapped,
[N = [P,

The set of arcs C' is composed of two mutually exclusive
subsets, Cr and Cp containing physical network channels
and virtual mapping channels. Channels in Cr interconnect
nodes in Ngr and Ny according to the physical router net-
work architecture. Channels in Cp interconnect every node
in Np to all nodes in Nyr. No interconnections are made
between nodes in Nr and Np.

More than a single physical channel is allowed to con-
nect a given pair of routers. However, an NI ny; is al-
ways connected to a single router through one egress channel
ce(nnr) € Cr and one ingress channel ¢;(nnyr) € Cr, de-
picted in Figure 1.

Time-division of network channel capacity is governed by
slot tables. These tables are used to set up pipelined virtual
circuits and divide bandwidth between flows [20]. A slot
table is a sequence of elements in T = F U {@}. Slots are
either occupied by a flow f € F' or empty, represented by &.
The number of residual slots in a slot table ¢ is denoted o (t).
The same slot table size St is used throughout the entire
network.

Each channel ¢ € C' is associated with the bandwidth not
yet reserved (residual bandwidth) measured in number of
slots, B(c), and a slot table, ¢(c). Let s(c) denote the source
node of ¢ and d(c) destination node.

As residual bandwidth and slot tables change over itera-
tions, I is subscripted with an index. Iy denotes the initial
network where, 3(c) = St and every slot in t(c) is empty for
every channel ¢ € C.

Definition 3. A path m € seqC from source ns € N to
destination ng € N is a non-empty sequence of channels
(c1y...,ck) such that:

1. d(c;) = s(cig1) for k=1..k—1

2. s(head 7) = ns and d(last 7) = ng.

]b — Il —
mapo — mapi —
o =P - P/ C

_ Cg -

<f17f27f2>>
Cr

—
-

-<jéaQ5’f1>-

— I
— mapi
- P,; = {IP1,1P,,IP3} = P

Figure 1: Iteration and successive refinement of mapping and interconnection network

A path m = (e1,...,ck) is associated with an aggregated
slot table ¢(w). Every channel slot table t(c;),s = 1..k, is
shifted cyclically ¢ — 1 steps left and a slot in ¢(7) is empty
iff it is empty in all shifted slot tables [20].

Definition 4. For a source and destination node ns,ng €
N, II(ns,nq) is the set of all possible paths from ns to ng.

The NIs and core mapping nodes together form the set of
mappable nodes, Ny = Nyp U Np as shown in Figure 1(a).
Ny contains all nodes to which the elements of Pys can be
mapped. We define a mapping function, map; : Pxr — N,
that maps sets of cores (the elements in Pys) to mappable
nodes. Like I, this function will be iterated over, hence the
index. Our starting point is an initial mapping, mapo, where
every [p] € Pu is mapped to a unique np € Np.

As seen in Figure 1(a), the range of mapo initially covers
only Np. As the algorithm progresses (b), the range of map;
covers both Np and Ny partially. Successive iterations of
map; progressively replace elements of Np with elements of
Nnr until a final mapping is derived (c), where the range of
mapy contains elements of Ny exclusively.

Let the set of mapped cores P/ denote those elements of
P where map;([p]) € Nni. From our definition of mapg it
follows that P} = @.

4.1 UMARS contribution

We now introduce a major change from previous work and
formulate mapping and path selection problem as a pure path
selection problem.

Given an interconnection network Iy and an application
graph A, we must select a path 7 for every flow f € F such
that bandwidth (1) and latency (2) requirements of the flow
are met without overallocating the network channels (3).

bandwidth of ¢(7) > b(f) (1)
latency of t(w) < I(f) (2)
B(c) >0,Vee C (3)

The theory required to derive worst-case bandwidth and
latency from a slot table is covered in [5].

S. UNIFIED MAPPING AND ROUTING

The outmost level of UMARS is outlined in Algorithm 5.1
and briefly introduced here, whereafter further explanations
follow in Sections 5.1 and 5.2.

UMARS iterates over the monotonically decreasing set of
unallocated flows F} and never back-tracks to reevaluate an
already allocated flow, as seen in Step 2a. This results in low
time-complexity at the expense of optimality. The flow f

is selected based on the current mapping map; and network
I;. When a path 7 is selected for f in Step 2b, the first
and last channel traversed implicitly determine what NI s(f)
and d(f) should be mapped to respectively. Time-slots are
allocated to f on m whereafter map; and I; are refined to
reflect the new state. The procedure is repeated until all
flows are allocated.

Algorithm 5.1 Allocation of all flows F'
1. Let the set of unallocated flows Fj, = F
2. While F! # o:

(a) Get flow argmax ;¢ s b(f)
(b) Select a path 7 € II(s(f),d(f))

(c) Fi/+1 =F \{f}

5.1 Flow traversal order

We order flows by bandwidth requirements as it: 1) helps
in reducing bandwidth fragmentation [16], 2) is important
from an energy consumption and resource conservation per-
spective since the benefits of a shorter path grow with com-
munication demands [12], 3) gives precedence to flows with
a more limited set of possible paths [12].

Ordering by b(f) alone may affect resource consumption
negatively as clusters of communicating cores are disre-
garded. Consideration is taken by limiting the selection to
flows having s(f) or d(f) mapped to a node in Ny;. Every
cluster of communicating cores then have their flows allo-
cated in sequence. A similar approach is used in [17, 18]
where the next core is selected based on communication to
already mapped cores.

Due to the nature of the least-cost path selection algo-
rithm, explained in Section 5.2.2, we restrain the domain
even more and only consider flows where s(f) € P;. This
restriction can be removed if path selection is done also in
the reverse direction, from destination to source.

The next flow is chosen according to Equation (4), where
f e Fiff fe F/As(f) € P/. When the latter condition is
not fulfilled by any flow, the entire F) is used as domain.

arg max b(f) (4)
fer”

5.2 Path selection

When a flow f is chosen, we proceed to Step 2b of Algo-
rithm 5.1 and select a path for f. This is done according to
Algorithm 5.2, briefly presented here, followed by in-depth
discussions in Sections 5.2.1 through 5.2.5.

Path selection for f is composed of three major tasks:
1) Speculative bandwidth reservations for f are restored in

Algorithm 5.2 Path selection for a given f

1. If s(f) € P/, restore bandwidth reservation on egress
channel by adding [b(f)] to B(ce(map;([s(f)])))

2. If d(f) € P/, restore bandwidth reservation on ingress
channel by adding [b(f)] to B(cr(map:([d(f)])))

3. Select a constrained least-cost path 75 from
map;([s(f)]) to the router nrg € Ngr with lowest
cost. Arity is used to distinguish between routers with
equal cost.

4. If s(f) ¢ P/, then

(a) Refine map;11 = map; & {[s(f)] — d(head 7s)}

(b) Reserve egress bandwidth for all flows emanating
from [s(f)] by subtracting > ; . [b(fg)] from
B(ce(d(head w5))) where fr € Fg iff s(fe) €
[s(f)] and f& # f

(c) Reserve ingress bandwidth for all flows inci-
dent to [s(f)] by subtracting >_; ., [0(fr)] from

B(cr(d(head 7)) where fr € Fr iff d(fr) € [s(f)]

5. Select a constrained least-cost path 74 from d(last ms)

to map; ([d(f)])
6. If d(f) ¢ P/, then

(a) Refine mapi+1 = map; ® {[d(f)] — s(last 7q)}

(b) Reserve egress bandwidth for all flows emanating
from [d(f)] by subtracting }_; . [b(fE)] from
B(ce(s(last mq))) where fr € Fg iff s(fg) € [d(f)]

(c) Reserve ingress bandwidth for all flows inci-
dent to [d(f)] by subtracting }_, ., [0(fr)] from
B(cr(s(last ma))) where fr € Fr iff d(fr) € [d(f)]
and fr # f

7. Select a constrained set of slots T's in ¢() for the com-
plete path # = w1, ~ w4 and update t(c¢),Ve € w. Do
a final bandwidth reservation by subtracting |T’s| from

B(c),Ve € .

Steps 1 and 2 to have I; reflect what resources are available to
f prior to its allocation. Speculative reservations are required
as interdependent flows are not allocated simultaneously and
are further discussed in Section 5.2.1. 2) A path from s(f)
to d(f) is selected in Steps 3 and 5, a procedure elaborated
on in Section 5.2.2. If s(f) or d(f) are not yet mapped to
NIs, these steps include refinement of map;, which is covered
in Section 5.2.4. If map; is refined, then bandwidth reserva-
tions are made on ingress and egress channels for flows other
than f now having their source or destination mapped to an
NI. 3) Time-slots are selected and reserved on the resulting
path 7, as discussed in Section 5.2.5.

5.2.1 Bandwidth reservation

When s(f) for a flow f is mapped to an NI, the commu-
nication burden placed on the ingress and egress channels of
the NI is not determined by f only. As every p in [s(f)] is
fixed to this NI, the aggregated communication burden of all
flows incident to those cores is placed on the ingress channel.
The egress channel similarly has to accommodate all flows
emanating from those cores. When d(f) is mapped, all flows
to or from [d(f)] must be accounted for accordingly.

Failing to acknowledge the above might result in overal-
location of network resources. Numerous flows, still not al-
located, may be forced to use the ingress and egress chan-
nel due to an already fixed mapping. An NI would thereby
be associated with an implicit load, not accounted for when
evaluating possible paths. We make this load explicit by

exploiting knowledge of ingress-egress pairs. Although we
have no knowledge of exactly what time slots will be needed
by future flows, we can estimate the bandwidth required by
[b(f)] and incorporate average load 3(c) in the cost function,
further discussed in Section 5.2.3.

Steps 1 and 2 of Algorithm 5.2 restore the speculative reser-
vations for f on egress and ingress channel to have I; reflect
what resources are available prior to its allocation.

The corresponding bandwidth reservations on egress and
ingress channels are carried out in Steps 4b, 4c and Steps 6b,
6¢ for source and destination NI respectively.

5.2.2 Selecting constrained least-cost path

Steps 3 and 5 of Algorithm 5.2 select a constrained least-
cost path using Dijkstra’s algorithm.

Two minor modifications are done to the standard relax-
ation procedure, where 7, denotes the partial path from s(f)
to the current node: 1) Search space is pruned by discarding
emanating channels where 3(c) < b(f) or o(t(mp —~ (c))) <
b(f). Channels that cannot meet bandwidth constraints are
thereby omitted. 2) As the final path must contain only
physical network resources, channels in C'p may only be the
first or last element of a path. Hence, if d(last 7p) € Np
then all emanating channels are discarded.

The NI architecture requires a path to incorporate at least
one physical channel as packets cannot turn around inside an
NI. From a least-cost perspective the best path from an NI
to itself would be the empty path and we force the algorithm
into leaving the NI by doing path selection in two steps.

The first part of the path 75 is selected in Step 3 of Algo-
rithm 5.2. We start at s(f) and find the router with lowest
cost. If several such routers exist then arity is used to dis-
tinguish between them. Routing flexibility is thereby max-
imized and the flows with highest communication volume
have their s(f) and d(f) mapped to NIs connected to high
arity routers as suggested in [18].

The second part of the path 74 is selected in Step 5, start-
ing where 7 ended. From there we continue to the location
where d(f) is currently mapped. The complete path is then
just the two parts concatenated, # = 75 —~ mq.

Deriving 7 like suggested above might, without further
care, lead to a path which is not the least-cost path in
II(s(f),d(f)) as minimization is done on the parts in iso-
lation'. However, if a flow f has s(f) € P/ then there is only
one possible least-cost router and hence only one possible 7.
As this 7, is a part of any path in II(s(f),d(f)) and 74 is a
least-cost path, 7 must be a least-cost path in II(s(f),d(f)).
We therefore prefer allocating flows where s(f) € Pj, as dis-
cussed in Section 5.1.

5.2.3 Choice of cost function

The cost function used plays an critical role in meeting
the requirements discussed in Section 3. It therefore reflects
both resource availability and resource utilization. We select
a path with low contention (high probability of successful
allocation), while at the same time trying to keep the path
length short, not to consume unnecessarily many resources.
Similar heuristics are suggested in [14, 15, 22].

Double objective path optimization in general is an in-
tractable problem [9]. Combining objectives in one cost func-
tion allows for tractable algorithms at the cost of optimal-
ity. We therefore use a linear combination of the two cost
measures, where two constants I'. and I'p, control the im-
portance (and normalization) of contention and hop-count
respectively.

Contention is traditionally incorporated by making chan-

!Compare a sum of minima to the minimum of a sum.

nel cost inversely proportional to residual bandwidth, ﬁ,

thereby considering only average load. When using pipelined
virtual circuits [20], average load is not reflecting what re-
sources are available to the current flow. Not even the slot
table t(c) itself provides an accurate view. We exploit knowl-
edge of the partial path m, traversed so far and determine
contention cost for a channel ¢ by how much ¢(c) reduces the
amount of available slots compared to ¢(mp) if ¢ is traversed.
Available bandwidth is incorporated by taking the maximum
of the two as contention measure, according to Equation (5).

Do max {Sz, — B(e), o(t(my)) — o(t(my ~ ()} + T (5)

Channels in Cp must not contribute to the path cost, as
they are not physical interconnect components. We therefore
make them zero-cost channels.

5.2.4 Refining mapping function

When a path 7 has been selected for a flow f, we check
in Step 4 of Algorithm 5.2, whether s(f) is not yet mapped
to an NI. If not, 7s decides the NI to which the core is to be
mapped. We therefore refine the current mapping function
with the newly determined mapping to a node in Ny as
seen in Step 6a. This refinement is fixed and every core in
[s(f)] is now in P;.

Correspondingly we check if d(f) is not yet mapped to an
NI in Step 6 and if not, refine the mapping according to 74
in Step 6a

5.2.5 Resource reservation

When the entire path 7 is determined in Step 7 of Algo-
rithm 5.2, we deduce the slots available to f by looking at
t(m). From the empty slots we select a set of slots T's such
that bandwidth and latency requirements of f are met [5].
All channels ¢ € 7 are then updated with a new t(c) and
B(c). Slot tables hereafter reflect what slots are reserved to
f and S(c) is updated with the actual number of slots used.

5.3 Algorithm termination

With each refinement of the map;, zero, one or two addi-
tional sets of cores will be mapped to elements of Ny instead
of Np, hence P{,; D Pj, as depicted in Figure 1.

THEOREM 1. Jk such that all cores are mapped to Nls,
P, =P.

PrOOF. When a flow is f allocated, map; will be refined
so that s(f) and d(f) are guaranteed to be in P;. For every
allocated flow f ¢ F] we hence know that s(f),d(f) € P;.

When all flows are allocated Fy, = &, s(f) and d(f),Vf € F
will be in Py. As no isolated cores are allowed in A it follows
that P = P;,. O

5.4 Algorithm complexity

Due to the greedy nature of UMARS, time-complexity is
very low as seen in Equation (6). The expression is domi-
nated by the first term that is attributable to Dijkstra’s al-
gorithm, used for path selection. Experiments indicate that
algorithm run-time is only 20% higher than that of load-
balancing path selection alone.

O(F|(IC] + [N[log [N])) + O(|F|(|F| + [P| + ST)) (6)

6. EXPERIMENTAL RESULTS

A cost function where ' = 1 and I', = 1 is used
throughout the experiments. Those values favor contention-
balancing over hop-count as the slot table size is an order
of magnitude larger than network diameter in all use-cases.
All results are compared with the traditional multi-step al-
gorithm in [7], referred to as original.

For comparison, only mesh topologies are evaluated. For
a given slot table size St, all unique n X m router networks
with less than 25 routers were generated in increasing size
order. For every such router network, up to three NIs were
attached to each router until all application flows were allo-
cated, or allocation failed. Slot table size was incremented
until allocation was successful.

Each design was simulated during 3 x 10° clock cycles in
a flit-accurate SystemC simulator of our NoC, using traffic
generators to mimic core behavior.

The mpeg use-case is a MPEG codec SoC, further described
in Section 6.2. The uniform use-case features all-to-all com-
munication with 20 cores and a total aggregated bandwidth
of 750 Mbps per core. The remaining use-cases are internal
designs, all having a hot-spot around a limited set of cores.

6.1 Evaluation experiments

Silicon area requirements are based on the model presented
in [6], assuming a 0.13 gm CMOS process. Figure 2 shows
that area requirements can be significantly reduced. Up to
33% in total area reduction is observed for the experiment
applications. Slot table sizes are reduced why the buffer re-
quirements, analytically derived as described in [7], decrease,
and area savings up to 31% are observed for the NIs. The
router network is between 30% and 75% smaller, but the
impact on total area is percentually much smaller.

I \etwork interfaces, original

7 [Network interfaces, UMARS R
[Routers, original

i Routers, UMARS

mpeg uniform s1m1p2 s1m2p2 s8m1p2 s8m2p2

Figure 2: Comparison of area requirements.

Relative energy consumption of the router network, calcu-
lated according to the model in [4] is depicted in Figure 3.
As the application remains the same and hence essentially
the same bits are being communicated, the savings in energy
consumption is attributable to flows being allocated on paths
with fewer hops. The correlation between energy saving ratio
and relative reduction in number of routers is clearly visible.
However, as the smaller router network is used more exten-
sively, energy is reduced less than the number of routers.

0.7 T T -
I Energy consumption
0.6} I Number of routers |

UMARS/original ratio
o o o o
Now N o

|

o
o
T
L

mpeg uniform s1mi1p2 s1m2p2 s8m1p2 s8m2p2

Figure 3: Comparison of energy consumption.

Figure 4 shows the average utilization of channels emanat-
ing from NIs and routers respectively. As expected, utiliza-

tion increase as router network size is reduced and UMARS
consequently improves both NI and router utilization. Time-
division-multiplexed circuits imply bandwidth discretization,
leading to inevitable over-allocation and complicating the
task of achieving high utilization. This together with un-
balanced hot-spot traffic, leaving some parts of the network
lightly loaded and others congested, lead to inherent low uti-
lization in some of the example use-cases. Note that utiliza-
tion is only to be optimized after all constraints are met.

80 T T T T T T
M I Network interfaces, original
70+ I Network interfaces, UMARS
[Routers, original
601 [1Routers, UMARS]
£ 50f i
S
= 40 1
N
= 30f 1
20 1
101 1

mpeg unifor:n s1mi1p2 s1m2p2 s8m1i1p2 s8m2p2

Figure 4: Comparison of NoC resource utilization.

6.2 An MPEG application

An existing MPEG codec SoC with 16 cores constitutes
our design example and results are shown in Table 1. The
architecture uses a single external SDRAM with three ports
to implement all communication between cores. A total of
42 flows tie the cores together. Using the design flow pre-
sented in [7] (clustered mapping, zy routing and greedy slot
allocation) results in a 2 x 3 mesh, referred to as clustering
in Table 1, with a total estimated area of 2.35 mm?. For
comparison, a naive mapping with one core partition per NI
is almost double in size, whereas the worst-case write latency
remains more or less unaffected.

A manually optimized mapping was produced which man-
aged to reduce the network area with 21% and an almost
four-fold reduction of average worst-case write latency was
observed [7].

UMARS arrives at a mesh of equal size to what was
achieved using the manually optimized mapping. Fewer Nls
are needed leading to reductions in router area. Smaller
buffer requirements, attributable to less bursty time-slot al-
location, results in reduced NI area. Total area is reduced by
17% and average worst-case latency by 4% compared to the
optimized handcrafted design. The solution was achieved in
less than 100 ms on a 500 MHz Solaris UltraSparc Ile. Only
a 20% increase in run-time was observed when compared to
pure load-balancing path selection, without mapping and slot
allocation.

Table 1: Comparison of MPEG NoCs

NI |Router|Total| Area |Avg wc

Generation | Mesh |Slots|area| area | area | diff |latency

clustering | 2x3 | 128 [1.83| 0.51 | 2.35 | ref |1570 ns
naive 3x6 | 128 |2.17| 2.32 | 4.49 [+91%|1583 ns

optimized | 1x3 | 8 [1.51| 0.35 | 1.86 |—21%] 399 ns

UMARS | 1x3 8 [1.26| 0.32 | 1.57 [—33%]| 383 ns

7. CONCLUSION AND FUTURE WORK

In this work we have presented the UMARS algorithm
which integrates the three resource allocation phases: spa-
tial mapping of cores, spatial routing of communication and
TDMA time-slot assignment. The algorithm is decomposed

into a hierarchical structure where mapping no longer is done
prior to routing but instead during it. UMARS improves
over existing mapping and routing algorithms by using a sin-
gle consistent objective-function.

The time-complexity of UMARS is low and experimental
results indicate a run-time only 20% higher than that of path
selection alone.

We apply the algorithm to an MPEG decoder SoC, im-
proving area 33%, power 35% and worst-case latency by a
factor four over a traditional multi-step approach.

The importance of the flow traversal order and the ob-
jective function are not yet fully evaluated and both play a
critical role in improving on the moderate results achieved in
some use-cases.

To allow a more extensive design space exploration for both
mapping and routing, UMARS can be extended to a k-path
algorithm, enabling a trade-off between complexity and op-
timality.

8. REFERENCES

[1] L. Benini and G. de Micheli. Networks on chips: A new SoC
paradigm. IEEE Comp., 35(1), 2002.

[2] D. Bertozzi et al. NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip. Trans. on Parallel and
Distr. Syst., 16(2), 2005.

[3] W. J. Dally and B. Towles. Route packets, not wires: on-chip
interconnection networks. In Proc. DAC, 2001.

[4] J. Dielissen et al. Power measurements and analysis of a
network-on-chip. Technical Report NL-TN-2005-0282, Philips
Research Laboratories, Eindhoven, 2005.

[5] O. P. Gangwal et al. Dynamic and Robust Streaming In And
Between Connected Consumer-Electronics Devices, Building
Predictable Systems on Chip: An Analysis of Guaranteed
Communication in the Athereal Network on Chip. Kluwer,
2005.

[6] S. Gonzélez Pestana et al. Cost-performance trade-offs in
networks on chip: A simulation-based approach. In Proc.
DATE, 2004.

[7] K. Goossens et al. A design flow for application-specific
networks on chip with guaranteed performance to accelerate
SOC design and verification. In Proc. DATE, 2005.

[8] R. Guérin and A. Orda. Networks with advance reservations:
The routing perspective. In Proc. INFOCOM, 2000.

[9] R. Guérin et al. QoS routing mechanisms and OSPF
extensions. In GLOBECOM, volume 3, 1997.

[10] W. H. Ho and T. M. Pinkston. A methodology for designing
efficient on-chip interconnects on well-behaved communication
patterns. In Proc. HPCA, 2003.

[11] J. Hu and R. Mérculescu. Energy-aware mapping for tile-based
NoC architectures under performance constraints. In Proc.
ASP-DAC, pages 233-239, 2003.

[12] J. Hu and R. Mairculescu. Exploiting the routing flexibility for
energy/performance aware mapping of regular NoC
architectures. In Proc. DATE, 2003.

[13] K. Keutzer et al. System-level design: Orthogonalization of
concerns and platform-based design. Trans. on CAD of
Integrated Circuits and Systems, 19(12), 2000.

[14] K. Kowalik and M. Collier. Should QoS routing algorithms
prefer shortest paths? In Proc. ICC, 2003.

[15] Q. Ma and P. Steenkiste. On path selection for traffic with
bandwidth guarantees. In Proc. ICNP, 1997.

[16] I. Matta and A. Bestavros. A load profiling approach to routing
guaranteed bandwidth flows. In Proc. INFOCOM, 1998.

[17] S. Murali and G. de Micheli. Bandwidth-constrained mapping
of cores onto NoC architectures. In Proc. DATE, 2004.

[18] S. Murali and G. de Micheli. SUNMAP: A tool for automatic
topology selection and generation for NoCs. In Proc. DAC,
2004.

[19] S. Murali et al. Mapping and physical planning of networks on
chip architectures with quality of service guarantees. In Proc.
ASP-DAC, 2005. (to appear).

[20] E. Rijpkema et al. Trade offs in the design of a router with
both guaranteed and best-effort services for networks on chip.
IEEE Proc. Comp. and Dig. Techn., 150(5), 2003.

[21] M. Sgroi et al. Addressing the system-on-a-chip interconnect
woes through communication-based design. In Proc. DAC,
2001.

[22] R. Widyono. The design and evaluation of routing algorithms
for real-time channels. TR-94-024, Univ. of Calif. at Berkeley &
Int’l Comp. Sci. Inst., 1994.

