
SAMOS, II(), 275–299 (2002)

Communication Services for Networks on Chip

Andrei R̆adulescu and Kees Goossens

Philips Research Laboratories, Eindhoven, The Netherlands
Email: andrei.radulescu|kees.goossens@philips.com

Abstract

Networks are emerging as a possible solution for fu-
ture on-chip interconnects. In this chapter, we show how
networks on chip (NoC) are similar to and differ from
both off-chip networks (e.g., computer networks) and cur-
rent on-chip interconnects (e.g., buses). We re-examine their
communication services in the context of NoCs. To en-
able a clean separation between the NoC and IP blocks,
we provide services that abstract from network implemen-
tations. We define a request-response transaction model
similar to bus protocols, to make our approach back-
ward compatible. To exploit the full power of NoCs,
we also provide connection-oriented communication with
differentiated services. Examples are bandwidth guaran-
tees, transaction orderings, and end-to-end flow control.

Key Words: Networks on chip, on-chip buses, computer
networks, communication services, protocol stack,
transaction, connection

275

Copyright C© 2000 by Marcel Dekker, Inc. www.dekker.com



276 Rădulescu and Goossens

I. Introduction

Networks on chip (NoC) have received considerable attention recently
as a solution to the interconnect problem in highly-complex chips [3–5,7–
9, 15, 20, 23]. The reason is twofold. First, NoCs help resolve the electri-
cal problems in new deep-submicron technologies, as they structure and
manage global wires [3–5,7,8]. At the same time they share wires, lower-
ing their number and increasing their utilization [7, 8]. NoCs can also be
energy efficient and reliable [4], and are scalable compared to buses [9].
Second, NoCs also decouple computation from communication, which is
essential in managing the design of billion-transistor chips [14, 23]. NoCs
achieve this decoupling because they are traditionally designed using pro-
tocol stacks [22], which provide well-defined interfaces separating com-
munication service usage from service implementation [5,23].

Using networks for on-chip communication when designing systems on
chip (SoC), however, raises a number of new issues that must be taken
into account. This is because, in contrast to existing on-chip interconnects
(e.g., buses, switches, or point-to-point wires), where the communicating
modules are directly connected, in a NoC the modules communicate re-
motely via network nodes. As a result, interconnect arbitration changes
from centralized to distributed, and issues like out-of order transactions,
higher latencies, and end-to-end flow control must be handled either by
the intellectual property block (IP) or by the network.

Most of these topics have been already the subject of research in the field
of computer networks [25] and parallel machine interconnect networks [6].
However, on-chip networks have different properties (e.g., tighter link syn-
chronization) and constraints (e.g., higher memory cost) leading to differ-
ent design choices, which ultimately affect the network services.

In this chapter, we compare NoCs and off-chip networks showing both
their similarities and differences. We also explore the differences between
NoCs and existing on-chip interconnects. We present an interface which
takes these issues into consideration. Our interface is aimed at being sim-
ilar to a split-transaction bus interface, such as VCI [26], OCP [17] or
DTL [18], to allow simple, low-cost wrappers to bus interfaces, and to al-
low backward compatibility with existingIPs. Our interface uses a request-
response protocol that provides basic read and write operations. But it



COMMUNICATION SERVICES FOR NOCS 277

extends bus interfaces to fully exploit the power of our NoC [8, 20, 21].
For example, it offers connection-based communication where end-to-end
flow control and time-related guarantees (e.g., bounded latency) can be
requested.

The chapter is organized as follows. In the next two sections we com-
pare NoC properties with those of off-chip networks and buses, respec-
tively. In Section IV, we define the services that we offer in our network.
Finally, we present our conclusions.

II. Networks Brought on Chip

Networks have been the subject of research for decades, both in the
context of local and wide area networks (computer networks) [25], and as
an interconnect for parallel machines [6]. Both are very much related to on-
chip networks, and many of the results in those fields are also applicable
on chip. However, NoC premises are different from off-chip networks, and,
therefore, most of the network design choices must be re-evaluated.

NoCs differ from off-chip networks mainly in their constraints and syn-
chronization. Typically, resource constraints are tighter on chip than off
chip. Storage (i.e., memory) and computation resources are relatively more
expensive, whereas the number of point-to-point links is larger on chip
than off chip [7].

Storage is expensive, because general-purpose on-chip memory, such as
RAMs, occupy a large area. Having the memory distributed in the network
components in relatively small sizes is even worse, as the overhead area in
the memory then becomes dominant.

For on-chip networks, computation too comes at a relatively high cost
compared to off-chip networks. An off-chip network interface usually con-
tains a dedicated processor to implement the part of the protocol stack, to
relieve the host processor from the communication processing. Including
a dedicated processor in a network interface may be not feasible on chip,
as the size of the network interface will become comparable to or larger
than theIP to be connected to the network. Moreover, running the pro-
tocol stack on theIP itself may also be not feasible, because often these
IPs have one dedicated function only, and do not have the capabilities to



278 Rădulescu and Goossens

run a network protocol stack. A cost-effective solution would be to have a
dedicated-hardware implementation of the protocol stack.

The number of wires and pins to connect network components is an
order of magnitude larger on chip than off chip [7]. If they are not used
massively for other purposes than NoC communication, they allow wide
point-to-point interconnects (e.g., 300-bit links) [7,15]. This is not possible
off-chip, where links are relatively narrower: 8-16 bits.

On-chip wires are also relatively shorter than off chip [7], allowing a
much tighter synchronization than off chip. This allows a reduction in the
buffer space in the routers because the communication can be done at a
smaller granularity. In the current semiconductor technologies, wires are
also fast and reliable, which allows simpler link-layer protocols (e.g., no
need for error correction, or retransmission). This also compensates for the
lack of memory and computational resources.

In the rest of the section, we list five network issues that have a direct
impact on the NoC cost: reliable communication, deadlock, data ordering,
network flow control and buffering strategy, and time-related guarantees.
For each of them, we discuss the differences and similarities for on- and
off-chip networks.

Reliable communication. A consequence of the tight on-chip re-
source constraints is that the network components (i.e., routers and net-
work interfaces) must be fairly simple to minimize computation and mem-
ory requirements. Luckily, on-chip wires currently provide a reliable com-
munication medium, which can help to avoid the considerable overhead
incurred by off-chip networks for providing reliable communication. Data
integrity can be provided at low cost at the data link layer. However, data
loss also depends on the network architecture. In most computer networks
data is simply dropped if congestion occurs in the network [6,25]. On-chip,
dropping data may lead to a too costly implementation of reliable commu-
nication. We show below that a network that does not drop data can be
a much lower-cost solution, at the peril of introducing the possibility of
deadlock.

Deadlock. Computer network topologies have generally an irregular
(possibly dynamic) structure, which can introduce buffer cycles. In such



COMMUNICATION SERVICES FOR NOCS 279

topologies, packet dropping at the network nodes may be required to avoid
deadlocks.

Deadlock can also be avoided without dropping data, for example by
introducing constraints either in the topology or routing. Fat-tree topolo-
gies have already been considered for NoCs, where deadlock is avoided
by bouncing back packets in the network in case of buffer overflow [9].
Tile-based approaches to system design [7, 15, 24] use mesh or torus net-
work topologies, where deadlock can be avoided using, for example, a
turn-model routing algorithm [6].

An alternative solution for deadlock in NoCs, which takes into consider-
ation that modules connecting to the network are either masters (initiating
requests and receiving responses), or slaves (receiving requests and send-
ing back responses), is to maintain separate virtual networks (with separate
buffers) for requests and responses [6].

Data ordering. In a network, data sent from a source to a destina-
tion may arrive out of order due to reordering in network nodes, following
different routes, or retransmission after dropping. For off-chip networks
out-of-order data delivery is typical. However, for NoCs where no data is
dropped, data can be forced to follow the same path between a source and
a destination (deterministic routing) with no reordering. This in-order data
transportation requires less buffer space, and reordering modules are no
longer necessary.

Network flow control and buffering strategy. Network flow con-
trol and buffering strategy have a direct impact on the memory utiliza-
tion in the network. Wormhole routing requires only a flit buffer (per
queue) in the router, whereas store-and-forward and virtual-cut-through
routing require at least the buffer space to accommodate a packet [6].
Consequently, on chip, wormhole routing may be preferred over virtual-
cut-through or store-and-forward routing. Similarly, input queuing may
be a lower memory-cost alternative to virtual-output-queuing or output-
queuing buffering strategies, because it has fewer queues. Dedicated
(lower cost) fifo memory structures also enable on-chip usage of virtual-
cut-through routing or virtual output queuing for a better performance [20].
However, using virtual-cut-through routing and virtual output queuing at



280 Rădulescu and Goossens

IN

IN

IN

ININ

R

R R

RR

IP IP

IP IP

IP

network

Figure 1. A network
interconnect example

IP IP

IP IPIP

bus

Figure 2. A bus
interconnect example

the same time is still too costly [20].

Time-related guarantees. Off-chip networks typically use packet
switching and offer best-effort services. Contention can occur at each net-
work node, making latency guarantees very hard to offer. Throughput guar-
antees can still be offered using schemes such as rate-based switching [27]
or deadline-based packet switching [19], but with high buffering costs.

An alternative to provide such time-related guarantees is to use time-
division multiple access (TDMA) circuits, where every circuit is dedicated
to a network connection. Circuits provide guarantees at a relatively low
memory and computation cost. Network resource utilization is increased
when the network architecture allows any left-over guaranteed bandwidth
to be used by best-effort communication [10,20,21].

III. From buses to NoCs

Introducing networks (Figure 1) as on-chip interconnects radically
changes the communication as compared to direct interconnects such as
buses or switches (Figure 2). This is because of the multi-hop nature of
a network, where communication modules are not directly connected, but
separated by one or more network nodes. This is in contrast with the preva-
lent existing interconnects (i.e., buses) where modules are directly con-
nected. The implications of this change reside in the arbitration (which



COMMUNICATION SERVICES FOR NOCS 281

must change from centralized to distributed), and in the communication
properties (e.g., ordering, or flow control).

In this section, we list some of these topics, and outline the differences
between NoCs and buses. We refer mainly to buses as direct intercon-
nects, because currently they are the most used on-chip interconnect. Most
of the bus characteristics also hold for other direct interconnects (e.g.,
switches [16]). Multilevel buses are a hybrid between buses and NoCs.
For our purposes, depending on the functionality of the bridges, multilevel
buses behave either like simple buses [2] or like NoCs.

Programming Model. The programming model of a bus typically
consists of load and store operations which are implemented as a se-
quence of primitive bus transactions. Bus interfaces typically have dedi-
cated groups of wires for command, address, write data, and read data [1,
12,13,17,18,26].

A bus is a resource shared by multipleIPs. Therefore, before using it,
IPs must go through an arbitration phase, where they request access to the
bus, and block until the bus is granted to them.

A bus transaction involves a request and possibly a response. Modules
issuing requests are called masters, and those serving requests are called
slaves. If there is a single arbitration for a request-response pair, the bus
is called non-split. In this case, the bus remains allocated to the master
of the transaction until the response is delivered, even when this takes a
long time. Alternatively, in a split bus, the bus is released after the request
to allow transactions from different masters to be initiated. However, a
new arbitration must be performed for the response such that the slave can
access the bus [11].

For both split and non-split buses, both communication parties have di-
rect and immediate access to the status of the transaction. In contrast, net-
work transactions are one-way transfers from an output buffer at the source
to an input buffer at the destination that causes some action at the destina-
tion, the occurrence of which is not visible at the source [6]. The effects of
a network transaction are observable only through additional transactions.
A request-response type of operation is still possible, but requires at least
two distinct network transactions. Thus, a bus-like transaction in a NoC
will essentially be a split transaction.



282 Rădulescu and Goossens

Transaction Ordering. Traditionally, all transactions on a bus are or-
dered (cf. Peripheral VCI [26], AMBA [1], DTL [18], or CoreConnect
PLB and OPB [12, 13]). This is possible at a low cost, because the in-
terconnect, being a direct link between the communicating parties, does
not reorder data. However, on a split bus, a total ordering of transactions
on a single master may still cause performance penalties, when slaves re-
spond at different speeds. To solve this problem, recent extensions to bus
protocols allow transactions to be performed on connections. Ordering of
transactions within a connection is still preserved, but between connec-
tions there are no ordering constraints (e.g., OCP [17], or Basic VCI [26]).
A few of the bus protocols allow out-of-order responses per connection
in their advanced modes (e.g., Advanced VCI [26]), but both requests and
responses arrive at the destination in the same order as they were sent.

In a NoC, ordering becomes weaker. Global ordering can only be pro-
vided at a very high cost due to the conflict between the distributed nature
of the networks, and the requirement of a centralized arbitration necessary
for global ordering.

Even local ordering, between a source-destination pair, may be costly.
Data may arrive out of order if it is transported over multiple routes. In
such cases, to still achieve an in-order delivery, data must be labeled with
sequence numbers and reordered at the destination before being delivered.

Atomic Chains of Transactions. An atomic chain of transactions is
a sequence of transactions initiated by a single master that is executed on
a single slave exclusively. That is, other masters are denied access to that
slave, once the first transaction in the chain claimed it. This mechanism
is widely used to implement synchronization mechanisms between master
modules (e.g., semaphores).

On a bus, atomic operations can easily be implemented, as the central ar-
biter will either (a) lock the bus for exclusive use by the master requesting
the atomic chain, or (b) not granting access to a locked slave. In the former
case, the duration resources are locked is shorter because once a master has
been granted access to a bus, it can quickly perform all the transactions in
the chain (no arbitration delay is required for the subsequent transactions
in the chain). Consequently, the locked slave and the bus can be opened up
again in a short time. This approach is used in AMBA and CoreConnect.



COMMUNICATION SERVICES FOR NOCS 283

In the latter case, the bus is not locked, and can still be used by other mod-
ules, however, at the price of a longer locking duration of the slave. This
approached is used in VCI and OCP.

In a NoC, where the arbitration is distributed, masters do not know that
a slave is locked. Therefore, transactions to a locked slave may still be
initiated, even though the locked slave cannot accept them. Consequently,
to prevent deadlock, these other transactions must be either dropped, or
transactions in the atomic chain must be able to bypass them to be served.
Moreover, the duration a module is kept locked is much longer in case of
NoCs, because of the higher latency per transaction.

Deadlock. In buses, deadlock is generally not an issue. Deadlock can
still occur at the application level (e.g., an atomic chain of transactions that
locks the bus, but never unlocks it), but this is not caused by the intercon-
nect itself.

In a network, deadlock becomes a more important issue, and special
care has to be taken in the network design to avoid deadlock. Deadlock is
mainly caused by cycles in the buffers. To avoid deadlock, either network
nodes must drop packets when their buffers are filled, or routing must be
cycle-free. In a NoC, we believe the latter is preferable, because of its
lower cost in achieving reliable communication (see Section II).

A second cause of deadlock are atomic chains of transactions. The rea-
son is that while a module is locked, the queues storing transactions may
get filled with transactions outside the atomic transaction chain, blocking
the access of the transaction in the chain to reach the locked module. If
atomic transaction chains must be implemented (to be compatible with
processors allowing this, such as MIPS), the network nodes should be able
to filter the transactions in the atomic chain, or be allowed to drop those
blocking them.

Media Arbitration. An important difference between buses and
NoCs is in the medium arbitration scheme. In a bus, master modules re-
quest access to the interconnect, and the arbiter grants the access for the
whole interconnect at once. Arbitration iscentralizedas there is only one
arbiter component. It is alsoglobal as all the requests as well as the state
of the interconnect are visible to the arbiter. Moreover, when a grant is



284 Rădulescu and Goossens

given, the complete path from the source to the destination is exclusively
reserved.

In a non-split bus, arbitration takes place once when a transaction is
initiated. As a result, the bus is granted for both request and response. In a
split bus, requests and responses are arbitrated separately.

In a NoC arbitration is also necessary, as it is a shared interconnect.
However, in contrast to buses, the arbitration isdistributed, because it is
performed in every router, and is based only onlocal information. Arbi-
tration of the communication resources (links, buffers) is performed incre-
mentally as the request or response advances [20].

Destination Name and Routing. For a bus, the command, address,
and data are broadcasted on the interconnect. They arrive at every desti-
nation, only one of which activates based on the broadcasted address, and
executes the requested command. This is possible because all modules are
directly connected to the same bus.

In a NoC, it is not feasible to broadcast information to all destinations,
because it must be copied to all routers and network interfaces. This floods
the network with data. The address is better decoded at the source to find
a route to the destination module. A transaction address has, therefore,
two parts: (a) a destination identifier, and (b) an internal address at the
destination.

Latency. Transaction latency is caused by two factors: (a) the access
time to the bus, which is the time until the bus is granted, and (b) the
latency introduced by the interconnect to transfer the data.

For a bus, where the arbitration is centralized, the access time is pro-
portional to the number of masters connected to the bus. The transfer la-
tency itself typically is constant and relatively low, because the modules
are linked directly. However, the speed of transfer is limited by the bus
speed, which is relatively low.

In a NoC, arbitration is performed at each router for the following link.
The access time per router is small. Both end-to-end access time and trans-
port time increase proportionally to the number of hops between master
and slave. However, network links are unidirectional and point to point
and, hence, can run at higher frequencies than buses, thus lowering the



COMMUNICATION SERVICES FOR NOCS 285

latency.
From a latency prospective, using a bus or a network is a trade off be-

tween the number of modules connected to the interconnect (which affects
access time), the speed of the interconnect, and the network topology.

Data Format. In most modern bus interfaces the data format is de-
fined by separate wire groups for the transaction type, address, write data,
read data, and return acknowledgments/errors (e.g., VCI, OCP, AMBA,
DTL, or CoreConnect). This is used to pipeline transactions. For example,
concurrently with sending the address of a read transaction, the data of a
previous write transaction can be sent, and the data from an even earlier
read transaction can be received. Moreover, having dedicated wire groups
simplifies the transaction decoding; there is no need for a mechanism to
select between different kinds of data sent over a common set of wires.

Inside a network, there is typically no distinction between different
kinds of data. Data is treated uniformly and passed from one router to
another. This is done to minimize the control overhead and buffering in
routers. If separate wires would be used for each of the above-mentioned
groups, separate routing, scheduling and queuing would be needed, and
the cost of routers would increase proportionally.

In addition, in a network at each layer in the protocol stack, control
information must be supplied together with the data (e.g., packet type, net-
work address, or packet size). This control information is organized as an
envelope around the data. That is, first a header is sent, followed by the ac-
tual data (payload), followed possibly by a trailer. Multiple such envelopes
may be provided for the same data, each carrying the corresponding con-
trol information for each layer in the network protocol stack [6,25].

Buffering and Flow Control. Buffering data of a master (output
buffering) is used both for buses and NoCs to decouple computation from
communication. However, for NoCs output buffering is also needed to
marshal data, which consists of (a) (optionally) splitting the outgoing data
in smaller packets which are transported by the network, and (b) adding
control information for the network around the data (packet header). To
avoid output buffer overflow the master must not initiate transactions that
generate more data than the currently available space.



286 Rădulescu and Goossens

Similarly to output buffering, input buffering is also used to decouple
computation from communication. In a NoC, input buffering is also re-
quired to unmarshal data.

In addition, flow control for input buffers differs for buses and NoCs.
For buses, the source and destination are directly linked, and, destination
can therefore signal directly to a source that it cannot accept data. This
information can even be available to the arbiter such that the bus is not
granted to a transaction trying to write to a full buffer.

In a NoC, however, the destination of a transaction cannot signal di-
rectly to a source that its input buffer is full. Consequently, transactions to
a destination can be started, possibly from multiple sources, after the desti-
nation’s input buffer has filled up. Several policies can be adopted when an
input buffer is full. One policy is not to accept additional incoming transi-
tions, and to store them in the network. However, this approach can easily
lead to network congestion, as the data could be eventually stored all the
way to the sources, blocking the links in between. Another policy is to ac-
cept incoming transactions at a full destination, and drop some data in the
input buffer. Congestion is avoided but data is lost, and this is undesirable.

To avoid input buffer overflow connections can be used, together with
end-to-end flow control. At connection set up between a master and one
or more slaves, buffer space is allocated at the network interfaces of the
slaves, and the network interface of the master is assigned credits reflecting
the amount of buffer space at the slaves. The master can only send data
when it has enough credits for the destination slave(s). The slaves grant
credits to the master when they consume data.

IV. The Æthereal Approach

As described in the previous two sections, NoCs have different prop-
erties from both existing off-chip networks and existing on-chip inter-
connects. As a result, existing protocols and service interfaces cannot be
adopted directly to NoCs, but must take the characteristics of NoCs into
account. For example, a protocol such as TCP/IP assumes the network is
lossy, and includes significant complexity to provide reliable communica-
tion. Therefore, TCP/IP is not suitable in a NoC where we assume data



COMMUNICATION SERVICES FOR NOCS 287

transfer reliability is already solved at a lower level. On the other hand, ex-
isting on-chip protocols such as VCI, OCP, AMBA, DTL, or CoreConnect
are also not directly applicable. For example, they assume ordered trans-
port of data: if two requests are initiated from the same master, they will
arrive in the same order at the destination. This does not hold automatically
for NoCs. Atomic chains of transactions and end-to-end flow control also
need special attention in a NoC interface.

Our objectives when defining the services of our on-chip network
(called Æthereal) are the following. First, the services abstract from the
network internals as much as possible. This is a key ingredient in tackling
the challenge of decoupling the computation from communication [14,23],
which allowsIPs (the computation part), and the interconnect (the commu-
nication part) to be designed independently from each other. As a conse-
quence, our services are positioned at the transport layer in the ISO-OSI
reference model [25], which is the first layer to be independent of the im-
plementation of the network.

Second, we aim at a NoC interface as close as possible to a bus interface.
NoCs can then be introduced non-disruptively: existingIPs, methodologies
and tools can continue to be used with minor changes. As a consequence,
we use a request-response interface similar to interfaces for split buses [1,
12,13,17,18,26].

Third, our interface extends traditional bus interfaces to fully exploit
the power of NoCs. For example, we offer connection-based communica-
tion which does not only relax ordering constraints (as for buses), but also
enables new communication properties, such as end-to-end flow control
based on credits, or guaranteed throughput [8,20,21]. All these properties
can be set for each connection individually.

A. The Æthereal Connection and Transaction Model

IPs interact with our network [8, 20, 21] at so-called network interfaces
(NI). NIs provideNI ports (NIP) through which the communication services
are accessed. As shown in Figure 3, aNI can have severalNIPs to which one
or moreIPs (computation elements or memories, but not interconnection
elements) can be connected. Similarly, anIP can be connected to more than



288 Rădulescu and Goossens

oneNI andNIP.

IP

NI NI

IP

Figure 3. Examples of links betweenNIs andIPs.

Communication betweenNIPs is performed onconnections. Connec-
tions are introduced to describe and identify communication with different
properties, such as guaranteed throughput, bounded latency and jitter, or-
dered delivery, or flow control. For example, to distinguish and indepen-
dently guarantee communication of 1Mbs and 25Mbs, two connections
can be used. TwoNIPs can be connected by multiple connections, possi-
bly with different properties. Connections as defined here are similar to the
concept of threads and connections from OCP and VCI. Where in OCP and
VCI connections are used only to relax transaction ordering, we generalize
from only the ordering property to include configuration of buffering and
flow control, guaranteed throughput, and bounded latency per connection.

Æthereal connections must becreatedwith the desired properties before
being used. This may result in resource reservations inside the network
(e.g., buffer space, or percentage of the link usage per time unit). If the
requested resources are not available, the network will refuse the request.
After usage, connections areclosed, which leads to freeing the resources
occupied by that connection.

To allow more flexibility in configuring connections and, hence, better
resource allocation per connection, the outgoing and return parts of con-
nections are configured independently. For example, a different amount of
buffer space can be allocated in theNIPs at master and slaves, or different
bandwidths can be reserved for requests and responses.

Depending on the requested services, the time to handle a connec-
tion (i.e., creating, closing, modifying services) can be short (e.g., creat-
ing/closing an unordered, lossy, best-effort connection) or significant (e.g.,
creating/closing a multicast guaranteed-throughput connection). Conse-
quently, connections are assumed to be created, closed, or modified infre-
quently, coinciding e.g., with reconfiguration points, when the application
requirements change.



COMMUNICATION SERVICES FOR NOCS 289

ANIP PNIP
OUTDATA

RETDATA RETSTAT

CMD

Figure 4. Transaction composition.

Communication takes place on connections usingtransactions, consist-
ing of a request and possibly a response. The request encodes an operation
(e.g., read, write, flush, test and set, nop) and possibly carries outgoing
data (e.g., for write commands). The response returns data as a result of a
command (e.g., read) and/or an acknowledgment.

Connections involve at least twoNIPs. Transactions on a connection are
always started at one and only one of theNIPs, called the connection’s
activeNIP (ANIP). All the otherNIPs of the connection are calledpassive
NIPs (PNIP).

There can be multiple transactions active on a connection at a time, but
more generally than for split buses. That is, transactions can be started
at theANIP of a connection while responses for earlier transactions are
pending. If a connection has multiple slaves, multiple transactions can be
initiated towards different slaves. Transactions are also pipelined between
a single master-slave pair for both requests and responses. In principle,
transactions can also be pipelined within a slave, if the slave allows this.

A transaction is composed from the following messages (see Figure 4):

r A commandmessage (CMD) is sent by theANIP, and describes the
action to be executed at the slave connected to thePNIP. Examples
of commands are read, write, test and set, and flush. Commands
are the only messages that are compulsory in a transaction. For
NIPs that allow only a single command with no parameters (e.g.,
fixed-size address-less write), we assume the command message
still exists, even if it is implicit (i.e., not explicitly sent by theIP).r An out datamessage (OUTDATA) is sent by theANIP following a
command that requires data to be executed (e.g., write, multicast,
and test-and-set).r A return datamessage (RETDATA) is sent by aPNIP as a conse-
quence of a transaction execution that produces data (e.g., read,
and test-and-set).r A completion acknowledgmentmessage (RETSTAT) is an optional



290 Rădulescu and Goossens

acknowledged write

ANIP PNIP
READ

DATA

ANIP
WRITE

OK / ERR
PNIP

DATA

ANIP
WRITE

WRITE

PNIP

PNIP

unacknowledged write

ANIP WRITE PNIPDATA

read

multicast

Figure 5. Transaction examples.

message which is returned byPNIP when a command has been
completed. It may signal either a successful completion or an er-
ror. For transactions including bothRETDATA and RETSTAT the
two messages can be combined in a single message for efficiency.
However, conceptually, they exist both:RETSTAT to signal the
presence of data or an error, andRETDATA to carry the data. In
bus-based interfacesRETDATA andRETSTAT typically exist as two
separate signals [1,12,13,17,18,26].

Messages composing a transaction are divided inoutgoingmessages,
namelyCMD and OUTDATA, and responsemessages, namelyRETDATA,
RETSTAT. Within a transaction,CMD precedes all other messages, and
RETDATA precedesRETSTAT if present. These rules apply both between
master andANIP, andPNIP and slave. Examples of transactions are shown
in Figure 5.

We classify connections as follows (see Figure 6):

r A simpleconnection is a connection between oneANIP and one
PNIP.r A narrowcastconnection is a connection between oneANIP and
one or morePNIPs, in which each transaction that theANIP initi-
ates is executed by exactly onePNIP. An example of the narrow-
cast connection is shown in Figure 7, where theANIP performs
transactions on an address space which is mapped on two mem-
ory modules. Depending on the transaction address, a transaction
is executed on only one of these two memories.r A multicastconnection is a connection between oneANIP and one



COMMUNICATION SERVICES FOR NOCS 291

narrowcast:

multicast:

simple:

ANIP
PNIP

PNIP
PNIP

ANIP
PNIP

PNIP
PNIP

ANIP PNIP

Figure 6. Connection types.

IN

µP

IN

M
2

IN

M
1

rd, w
r

rd, w
r

0-7F

80-F
F

0-F
F

Figure 7. A narrowcast
connection.

or morePNIPs, in which the sent messages are duplicated and each
PNIP receives a copy of those messages. In a multicast connec-
tion no return messages are currently allowed, because of the large
traffic they generate (i.e., one response per destination). It could
also increase the complexity in theANIP because individual re-
sponses fromPNIPs must be merged into a single response for the
ANIP. This requires buffer space and/or additional computation
for the merging itself.

B. Connection Properties

In this section we elaborate on the features that can be configured for
a connection: guaranteed message integrity, guaranteed transaction com-
pletion, various transaction orderings, guaranteed throughput, bounded la-
tency and jitter, and connection flow control.

Data Integrity. Data integrity means that the content of messages is
not changed (accidentally or not) during transport. We assume that data
integrity is already solved at a lower layer in our network, namely at the
link layer, because in current on-chip technologies data can be transported
uncorrupted over links. Consequently, our network interface always guar-
antees that messages are delivered uncorrupted at the destination.



292 Rădulescu and Goossens

Transaction Completion. A transaction without a response (e.g., a
posted write) is said to be complete when it has been executed by the slave.
As there is no response message to the master, no guarantee regarding
transaction completion can be given.

A transaction with a response (e.g., an acknowledged write) is said to
be complete when aRETSTAT message is received from theANIP1. The
transaction may either (a) be executed successfully, in which case a success
RETSTAT is returned, (b) fail in its execution at the slave, in which case an
execution errorRETSTAT is returned, or (c) fail because of buffer overflow
in a connection with no flow control, in which case it reports an overflow
error. We assume that when a slave accepts aCMD requesting a response,
the slave always generates the response.

In our network, routers do not drop data [21]. Therefore, messages are
always guaranteed to be delivered at theNI. For connections with flow
control, alsoNIs do not drop data. Thus, message delivery and, thus, trans-
action completion to theIPs is guaranteed automatically in this case.

However, if there is no flow control, messages may be dropped at the
network interface in case of buffer overflow (see the paragraph on end-to-
end flow control below). All ofCMD, OUTDATA, and RETDATA may be
dropped at theNI. To guarantee transaction completion,RETSTAT is not
allowed to be dropped. Consequently, in theANIPs enough buffer space
must be provided to accommodateRETSTAT messages for all outstand-
ing transactions. This is enforced by bounding the number of outstanding
transactions.

Transaction Ordering. Across different connections no ordering of
transactions is defined at the transport layer.

There are several points in a connection where order of transactions can
be observed (see Figure 8): (a) the order in which the master presentsCMD

messages to theANIP, (b) the order in which theCMDs are delivered to the
slave by thePNIP, (c) the order in which the slave presents the responses
to thePNIP, and (d) the order the responses are delivered to the master by
the ANIP. Note that not all of (b), (c), and (d) are always present. More-
over, there are no assumptions about the order in which the slaves execute

1Recall that when data is received as a response (RETDATA), aRETSTAT (possibly implicit)
is also received to validate the data.



COMMUNICATION SERVICES FOR NOCS 293

b

c

b’

c’

PNIP

PNIP

slave

slave

ANIPmaster network
a

d

Figure 8. Message ordering is observable at a, b, c, and d.

transactions; we can only observe the order of the responses. We consider
the order of the transaction execution by the slaves to be a system decision,
and not a part of the interconnect protocol.

At both ANIP and PNIPs, outgoing messages belonging to different
transactions on the same connection are allowed to be interleaved. For ex-
ample, two write commands can be issued, and only afterwords their data.
If the order ofOUTDATA messages differs from the order ofCMD mes-
sages, transaction identifiers must be introduced to associateOUTDATAs
with their correspondingCMD.

Outgoing messages can be delivered by thePNIPs to the slaves (see
Figure 8-b) as follows:r Unordered, which imposes no order on the delivery of the outgo-

ing messages of different transactions at thePNIPs.r Ordered locally, where transactions must be delivered to each
PNIP in the order they were sent (Figure 8-a), but no order is im-
posed acrossPNIPs. Locally-ordered delivery of the outgoing mes-
sages can be provided either by an ordered data transportation, or
by reordering outgoing messages at thePNIP.r Ordered globally, where transactions must be delivered in the or-
der they were sent, across allPNIPs of the connection. Globally-
ordered delivery of the outgoing part of transactions require a
costly synchronization mechanism.

Transaction response messages can be delivered by the slaves to the
PNIPs (see Figure 8-c) as follows:r Ordered, whenRETDATA andRETSTAT messages are returned in



294 Rădulescu and Goossens

the same order as theCMDs were delivered to the slave (Figure 8-
b).r Unordered, otherwise.

When responses are unordered, there has to be a mechanism to identify
the transaction to which a response belongs. This is usually done using
tags attached to messages for transaction identifications (similar to tags in
VCI).

Response messages can be delivered by theANIP to the master (see
Figure 8-d) as follows:r Unordered, which imposes no order on the delivery of responses.

Here also, tags must be used to associate responses with their cor-
respondingCMDs.r Ordered locally, whereRETDATA andRETSTATmessages of trans-
actions for a single slave are delivered in the order the original
CMDs were presented by the master to theANIP (Figure 8-a).
Note that there is no ordering imposed for transactions to different
slaves within the same connection.r Globally ordered, where all responses in a connection are deliv-
ered to the master in the same order as the originalCMDs. When
transactions are pipelined on a connection, then globally-ordered
delivery of responses requires reordering at theANIP.

All 3× 2× 3 = 18 combinations between the above orderings are pos-
sible. Out of these, we define and offer the following two.

An unorderedconnection is a connection in which no ordering is as-
sumed in any part of the transactions. As a result, the responses must be
tagged to be able identify to which transaction they belong. Implementing
unordered connections has low cost, however, they may be harder to use,
and introduce the overhead of tagging.

An orderedconnection is defined as a connection withlocal ordering
for the outgoing messages fromPNIPs to slaves (Figure 8-b),orderedre-
sponses at thePNIPs (Figure 8-c), andglobal ordering for responses at the
ANIP (Figure 8-d). We choose local ordering for the outgoing part because
the global ordering has a too high cost, and has few uses. The ordering of
responses is selected to allow a simple programming model with no tag-
ging. Global ordering at theANIP is possible at a moderate cost, because



COMMUNICATION SERVICES FOR NOCS 295

all the reordering is done locally in theANIP.
A user can emulate connections with global ordering of outgoing and

return messages at thePNIPs using non-pipelined acknowledged transac-
tions, at the cost of high latency.

Connection latency, throughput, and jitter. In our network,
throughput can be reserved for connections in a time-division multiple ac-
cess (TDMA) fashion, where bandwidth is split in fixed-size slots on a
fixed time frame. Bandwidth, as well as bounds on latency and jitter, can
be guaranteed when slots are reserved. They are all defined in multiples of
the slots. throughput, latency and jitter can all be configured independently
for the request and response parts of a connection.

Fully guaranteed-throughput connections (i.e., providing throughput
guarantees on both request and return parts of the connection) can over-
book resources in some cases. For example, when anANIP opens a
guaranteed-throughput read connection, it must reserve slots for the read
command messages, and for the read data messages. The ratio between the
two can be very large (e.g., 1:100), which leads either to a large number of
slots, or bandwidth being wasted for the read command messages.

To resolve this problem, the request part of a connection can be best ef-
fort, while the response can have guaranteed throughput (or vice versa).
For the example mentioned above, one can use best effort read mes-
sages, and guaranteed-throughput read-data messages. No global connec-
tion guarantees can be offered in this case, but the overall throughput can
be higher and more stable than in the case of using only best-effort traffic.

Connection flow control. As mentioned earlier, our network guaran-
tees that messages are delivered to theNI. Messages sent from one of the
NIPs are not immediately visible at the otherNIP, because of the multi-hop
nature of networks. Consequently, handshakes over a network would allow
only a single message be transmitted at a time. This limits the through-
put on a connection and adds latency to transactions. To overcome this
problem, and achieve a better network utilization, the messages must be
pipelined. In this case, if the data is not consumed at thePNIP at the same
rate it arrives, either flow control must be introduced to slow down the pro-
ducer, or data may be lost because of limited buffer space at the consumer



296 Rădulescu and Goossens

NI.
We introduce end-to-end flow control at the level of connections, which

requires buffer space to be associated with connections. End-to-end flow
control ensures that messages are sent over the network only when there is
enough space in theNIP’s destination buffer to accommodate them.

End-to-end flow is optional (i.e., to be requested when connections are
opened) and can be configured independently for the outgoing and re-
turn paths. When no flow control is provided, messages are dropped when
buffers overflow. Multiple policies of dropping messages are possible, as
in off-chip networks. Possible scenarios include: (a) the oldest message is
dropped (milk policy), or (b) the newest message is dropped (wine pol-
icy) [25].

We opt for a credit-based flow control. Credits are associated with the
empty buffer space at the receiverNI. The sender’s credit is lowered as data
is sent. When thePNIP delivers data to the slave, credits are granted to the
sender. If the sender’s credit is not sufficient to send some data, theNI at
the sender stalls the sending.

C. Use Cases

To illustrate the need for differentiated services on connections, we con-
sider in this section two examples of traffic. We describe the properties they
would use over an Æthereal connection to meet their traffic requirements.

Video processing streams typically require a lossless, in-order video
stream with guaranteed throughput, but possibly allow corrupted samples.
An Æthereal connection for such a stream would require the necessary
throughput, ordered transactions, and flow control. If the video stream is
produced by the master, only write transactions are necessary. In this case,
with a flow-controlled connection there is no need to also require transac-
tion completion, because messages are never dropped, and the write com-
mand and its data are always delivered at the destination. Data integrity is
always provided by our network, even though it may be not necessary in
this case.

Another example is that of cache updates which require uncorrupted,
lossless, low-latency data transfer, but ordering and guaranteed throughput



COMMUNICATION SERVICES FOR NOCS 297

are less important. In this case, a connection would not require any time re-
lated guarantees, because even though an average low latency is required, a
guarantee on low latency is not critical. Low latency can be obtained even
with a best-effort connection. The connection would also require flow con-
trol and guaranteed transaction completion to ensure lossless transactions.
However, no ordering is necessary, because this is not important for cache
updates, and allowing out of order transaction can reduce the response
time.

V. Conclusions

In this chapter, we compare networks on chip (NoC) to off-chip net-
works (e.g., computer networks) and existing on-chip interconnects (e.g.,
buses). We show that NoCs have many similarities with off-chip networks.
However, they also differ, especially in their resource constraints. For ex-
ample on a chip, memory and computation resources are more expensive,
while there are more wires. This makes NoC architectures different from
off-chip networks, and requires rethinking of network services.

We also compare NoCs to existing on-chip interconnects, such as buses
and switches. By directly connectingIP blocks, existing on-chip intercon-
nects can offer tight coupling between masters and slaves, and global ar-
bitration. In NoCs, masters and slaves are completely decoupled, and the
arbitration is distributed over the network nodes. This make it harder to
provide guarantees, such as bandwidth lower bounds, and transaction or-
derings.

We define a set of NoC services that abstract from the network details.
Using these services inIP design decouples computation and communica-
tion. We use a request-response transaction model to be close to existing
on-chip interconnect protocols. This eases the migration of currentIPs to
NoCs. To fully utilize the NoC capabilities, such as high bandwidth and
transaction concurrency, our services provide connection-oriented com-
munication. Connections can be configured independently with different
properties. These properties include transaction completion, various trans-
action orderings, bandwidth lower bounds, latency and jitter upper bounds,
and flow control.



298 Rădulescu and Goossens

Our NoC services are a prerequisite for service-based system design
which makes applications independent of NoC implementations, makes
designs more robust, and enables architecture-independent quality-of-
service strategies.

References

1. ARM. AMBA Specification. Rev. 2.0, 1999.
2. ARM. Multi-Layer AHB. Overview., 2001.
3. J. Bainbridge and S. Furber. CHAIN: A delay-insensitive chip area

interconnect.IEEE Micro, 22(5), 2002.
4. L. Benini and G. De Micheli. Powering networks on chips. InISSS,

2001.
5. L. Benini and G. De Micheli. Networks on chips: A new SoC

paradigm.IEEE Computer, 35(1):70–80, 2002.
6. D. J. Culler, J. P. Singh, and A. Gupta.Parallel Computer Architec-

ture: A Hardware/Software Approach. Morgan Kaufmann Publishers,
1999.

7. W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-
connection networks. InDAC, 2001.

8. K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Net-
works on silicon: Combining best-effort and guaranteed services. In
DATE, 2002.

9. P. Guerrier and A. Greiner. A generic architecture for on-chip packet-
switched interconnections. InDATE, 2000.

10. P. J. Having.Mobile Multimedia Systems. PhD thesis, University of
Twente, 2000.

11. J. Hennessy and D. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1995.

12. IBM. 32-bit On-Chip Peripheral Bus. Rev. 2.1, 2001.
13. IBM. 32-bit Processor Local Bus. Rev. 2.9, 2001.
14. K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and

A. Sangiovanni-Vincentelli. System-level design: Orthogonalization
of concerns and platform-based design.IEEE Trans. on CAD of Inte-
grated Circuits and Systems, 19(12):1523–1543, 2000.



COMMUNICATION SERVICES FOR NOCS 299

15. S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg,
J. Öberg, Tiensyrj̈a, and A. Hemani. A network on chip architecture
and design methodology. InISVLSI, 2002.

16. J. A. Leijten, J. L. van Meerbergen, A. H. Timmer, and J. A.
Jess. Prophid, a data-driven multi-processor architecture for high-
performance DSP. InED&TC, 1997.

17. OCP International Partnership.Open Core Protocol Specification,
2001.

18. Philips.DTL Protocol Specification. Rev. 2.1, 2001.
19. J. Rexford.Tailoring Router Architectures to Performance Require-

ments in Cut-Through Networks. PhD thesis, Univ. Michigan, 1999.
20. E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meer-

bergen, P. Wielage, and E. Waterlander. Trade offs in the design of a
router with both guaranteed and best-effort services for networks on
chip. InDATE, 2003.

21. E. Rijpkema, K. Goossens, and P. Wielage. A router architecture for
networks on silicon. InPROGRESS, Oct. 2001.

22. M. T. Rose.The Open Book: A Practical Perspective on OSI. Prentice
Hall, 1990.

23. M. Sgori, M. Sheets, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip inter-
connect woes through communication-based design. InDAC, 2001.

24. P. Stravers and J. Hoogerbrugge. Homogeneous multiprocessing and
the future of silicon design paradigms. InVLSI-TSA, 2001.

25. A. S. Tanenbaum.Computer Networks. Prentice Hall, 1996.
26. VSI Alliance.Virtual Component Interface Standard, 2000.
27. H. Zhang. Service disciplines for guaranteed performance service in

packet-switching networks.Proc. of the IEEE, 83(10):1374–1396,
1995.


