
AN EVENT-BASED NETWORK-ON-CHIP MONITORING SERVICE

Calin Ciordas † Twan Basten † Andrei Rădulescu ‡ Kees Goossens ‡

Jef van Meerbergen †‡

† Eindhoven University of Technology, Eindhoven, The Netherlands
‡Philips Research Laboratories, Eindhoven, The Netherlands

c.ciordas@tue.nl

Abstract

Networks on chip (NoCs) are a scalable interconnect
solution for large scale multiprocessor systems on chip
(SoCs). However, little attention has been paid so far to the
monitoring and debugging support for NoC-based systems.
We propose a generic on-line event-based NoC monitoring
service, based on hardware probes attached to NoC compo-
nents. The proposed monitoring service offers run-time ob-
servability of NoC behavior and supports system-level and
application debugging. The defined service can be accessed
and configured at run-time from any network interface port.
We present a probe architecture for the monitoring service,
together with its associated programming model and traffic
management strategies. We prove the feasibility of our
approach via a prototype implementation for the Æthereal
NoC. The additional monitoring traffic is low; typical moni-
toring connection configuration for a NoC-based SoC appli-
cation needs only 4.8KB/s, which is 6 orders of magnitude
lower than the 2GB/s per link raw bandwidth offered by the
Æthereal NoC.

1 Introduction

Due to the ever increasing miniaturization of transistors,
very complex chip designs are becoming possible. For both
physical and complexity reasons, future chip designs will
inherently be multiprocessor systems, consisting of hun-
dreds of modules (IPs).

Design of large-scale chips needs to be structured re-
sulting in the decoupling of the communication from com-
putation. Advanced, scalable interconnects such as NoCs
[2, 3, 7, 8, 10, 13, 16] have been proposed. They help decou-
pling computation and communication and offer well de-
fined interfaces [2, 5, 16], enabling IP reuse.

Observability is a key issue in embedded systems
debugging. Without proper computation and communica-
tion observability of the system, the task of debugging is
impossible. The basic requirement for debugging is the ex-
istence of a monitoring system. Monitoring translates to the
observability problem: is it possible to observe the internals
of a system while it is running? In this paper we focus on

the monitoring task, while recognizing the importance of
the debugging task.

Related Work. Computation observability received a lot
of attention in the literature. Philips’ real-time observability
solution, SPY [18], allows the nonintrusive output of inter-
nal signals on 12 chip pins. The internal signals are grouped
in sets of 12 signals and are hierarchically multiplexed on
the 12 pins. The observed signals are a design-time choice.

ARM’s embedded trace macrocell (ETM) [1] offers real-
time information about core internals. It is capable of non-
intrusively tracing instructions and data accesses at core
speed. The trace is made available off-chip by means of
a trace port of up to 16 bits.

The NEXUS standard [9] proposes a debug interface for
real-time observability of standard defined features. It pro-
poses a standard port while letting the implementation de-
tails to the users.

Whereas computation observability in the context of
multiprocessor SoCs with deeply embedded cores has been
studied and many solutions have been proposed, the on-
chip communication observability has been mostly ignored.
This is because computation observability covers most of
bus-based chips. With the emerging trend of NoC-based
SoCs, the on-chip communication becomes more sophisti-
cated, relying on active run-time programmable solutions.
Programmable NoC solutions can be error prone, e.g. in-
troducing congestion or deadlock, leading to a need for
debugging. In NoCs, there is no central point of commu-
nication/arbitration, like in busses; multiple truly parallel
communication paths exists, adding to complexity. In the
context of the trend towards NoCs, we need communication
observability.

Today, in the research community, the focus is on the
design [3, 8, 11, 13], analysis [4] and use [6, 14] of NoCs.
There is no support for communication observability in
NoC-based SoCs. Today, to the best of our knowledge,
there are no NoC monitoring systems.

Contribution. This paper proposes a NoC run-time mo-
nitoring system for NoC-based SoCs. The main monitoring
requirements are scalability, flexibility, nonintrusiveness,
real-time capabilities, and cost. Our solution to the run-time
monitoring problem for NoC-based SoCs is a generic NoC
monitoring service. This generic NoC monitoring service
can be instantiated for any NoC. The NoC monitoring ser-



vice can be configured from any NoC master network inter-
face. The NoC service is based on hardware probes attached
to network components, i.e. routers or network interfaces.
The service allows:

(1) The non-intrusive capturing of run-time information
and functional data in NoC-based SoCs.

(2) The event-based modeling of monitoring information
to be generated in the hardware probes. Events and their
attributes are run-time configurable. This approach allows
on-chip abstraction of data to reduce the cost of transporting
the information.

(3) Run-time setup, control and use of the monitoring ar-
chitecture. The NoC itself is used for all these purposes. No
separate communication infrastructure is needed. Configu-
ration and monitoring traffic is managed at run-time.

We prove this concept via an implementation for the
Æthereal NoC [7, 16]. For a typical NoC-based SoC ap-
plication we show that the additional traffic introduced by
the monitoring service is 6 orders of magnitude lower than
the usual NoC user traffic.

Overview. Section 2 presents the Æthereal NoC con-
cepts. Section 3 explains the general concept of our NoC
monitoring service. Section 4 presents our event model, a
generic NoC event taxonomy and an instance of it for the
Æthereal NoC. In Section 5, the generic concepts of the
monitoring probe architecture and the Æthereal probe de-
tails are explained. The corresponding programming model
is presented in Section 6. Section 7 explains several traffic
management options for monitoring, covering configuration
traffic as well as monitoring data traffic. Section 8 presents
an example to quantify possible additional traffic introduced
by the NoC monitoring service. We end with conclusions.

2 Æthereal NoC

Several NoCs [2,3,7,8,10,13] have been proposed, using
different topologies and routing strategies. NoCs are gener-
ally composed of network interfaces (NIs) [17] and routers
(R) [16]. NIs implement the NoC interface to IP modules.
Rs transport data from NI to NI.

The Æthereal NoC [7, 16] runs at 500 MHz and offers a
raw bandwidth of 2GB/s per link in a 0.13 micron technol-
ogy. For Æthereal the topology can be selected arbitrarily
by the designer.

The Æthereal NoC provides transport layer services to
IPs in the form of connections, e.g. point-to-point connec-
tions or multicast, which can be either guaranteed through-
put (GT) or best effort (BE). Connections have properties
such as data integrity, transaction ordering or flow control.
Guarantees are provided by means of slot reservations in
routing tables of Rs and NIs. Slot reservations are pro-
grammed at run-time. Data integrity guarantees that the
data is not altered in the NoC. Transaction ordering guaran-
tees that the order of separate communications is preserved
per connection. Connection flow control guarantees that the
data that is sent will fit in the buffers at the receiving end, to
prevent data loss and network congestion.

A transaction takes place between multiple IPs via the
NoC, and is composed of multiple messages. Each message
is composed of several packets, that in turn consist of one
or more flits. Flits are the minimal transport unit.

3 NoC Monitoring Service

The monitoring service is offered by the NoC itself, in
addition to the communication services offered to IPs. The
NoC monitoring service consists of configurable monito-
ring probes (P) attached to NoC components, i.e. Rs or
NIs, their associated programming model, and a monitoring
traffic management strategy.

Event model. All the monitored information is modeled
in the form of events. An event model specifies the event
format, e.g. timestamped events or not. Currently, we focus
only on timestamped events. An event taxonomy helps to
distinguish different classes of events and to present their
meaning.

Monitoring probes. The monitoring probes are respon-
sible for the collection of the required information from
NoC components. The probes, Ps in figures 1 and 2, cap-
ture the monitored information in the form of timestamped
events. Multiple classes of events can be generated by each
probe, based on a predefined instance of an event model.
Monitoring probes are not necessarily attached to all NoC
components. The placement of probes is a design-time
choice and is related to the cost versus observability trade-
off. E.g. the topright R in figure 1 has no probe attached.

Programming model. The programming model de-
scribes the way in which the monitoring service is being
setup or torn down. It consists of a sequence of steps
for configuring the probes and the means of implementing
those steps. Probes are programmed via the NoC,e.g. using
memory mapped I/O [17] [15]. The monitoring service can
be configured at run-time, by an IP from any NI, called the
monitoring service access point (MSA).

Traffic management. Traffic management regulates the
traffic from the MSA to the probes, required to configure the
probes, and the traffic from the probes to the MSA required
to get the monitoring information out of the NoC. Already
available NoC communication services, e.g. GT or BE, or
dedicated services can be used for the traffic management.

Distributed vs. centralized NoC monitoring service.
We propose a monitoring service that can be configured as a
distributed or a centralized service, during run-time, at arbi-
trary moments in time. In a centralized monitoring service,
as shown in Figure 1, the monitoring information from the
selected probes is collected in a central point, in this case a
monitor, through a single MSA. For small NoCs, a central-
ized monitoring service is possible and convenient. How-
ever, the convergence of monitoring data to a central point
may become a bottleneck in large NoCs.

In a distributed monitoring service, the monitoring in-
formation is collected for different subsets of NoC compo-
nents at different points through multiple MSAs. In this way
bottlenecks are removed and we achieve scalability. Figure



NoC

MSA

P

R

P

R

P

R R

P

R

P

R

P

R

P

R

R R

P

R

P

R

P

R

P

R

P

R

P

R

NI IPNIIP

IP

IP

NI

NI

NI NI NI

NI NI NI

NI

NI

NI NI

IP

IP IP

IPIPIPIP

IP IPIP

Monitor

IPNI

NI

Figure 1. Centralized Monitoring Service

NoC

Dedicated IP
MSA1

Off chip interface
MSA2

P

R

P

R

P

R R

P

R

P

R

P

R

P

R

R R

P

R

P

R

P

R

P

R

P

R

P

R

NI IPNIIP

IP

IP

NI

NI

NI NI NI

NI NI NI

NI

NI

NI NI

IP

IP IP

IPIPIPIP

IP IPIP

P

P

NI

NI

Figure 2. Distributed Monitoring Service

2 shows a distributed monitoring service composed of two
subsets of components. One connects directly to a dedi-
cated monitoring IP through MSA1. The second connects,
indirectly through a R which is not part of the subset, to an
off-chip interface through MSA2. The subsets can be pro-
grammed at run-time offering increased flexibility. Hence
a probe can be part of one subset at one time and of a dif-
ferent subset at other times, see the probes attached to Rs
in the middle of the figure. Monitoring information can be
either used on-chip, e.g. by the dedicated IP in Figure 2,
or it can be sent off-chip either directly through an off-chip
link or via a memory.

4 Event Model

4.1 Events

An event [12] is a happening of interest, which occurs
instantaneously at a certain time. In our view, an event is a
tuple:

Event=(identifier, timestamp, producer, attributes)
The mandatory event identifier identifies events belong-

ing to a certain class of events and is unique for each class.

The timestamp defines the time at which the producer gen-
erates the event. The producer is the entity that generates
the event. Attributes are the useful payload of events. Each
attribute is present in the form:

Attribute=(attribute identifier, value)
The attributes and the number of attributes may depend

on the event type.

4.2 NoC Event Taxonomy

In the following, we present a taxonomy of NoC events,
exemplified with Æthereal events. The term ‘user’ is used
to identify an IP. We can group NoC events in five main
classes: user configuration events, user data events, NoC
configuration events, NoC alert events, and monitoring ser-
vice internal events. This taxonomy covers all relevant
groups of events and is general enough to be valid for dif-
ferent types of NoCs, although event types may need to be
redefined for each specific NoC.

User Configuration Events. A NoC is used by IPs to
communicate to each other. User configuration events ex-
pose the configuration of this communication at the level
of the user API. Æthereal examples are Connection Opened
and Connection Closed events. The attributes are the con-
nection identifier, the type of the connection, e.g. narrow-
cast, the ports between which the connection exists, the path
of the connection and whether it is a GT or a BE connection.

User Data Events. This class of events allows the sniff-
ing or spying of functional data from the NoC. The sniff-
ing itself can be from the NoC elements or from the links.
Sniffing may be required for example to check whether the
transmitted data, such as a memory address, is exactly the
intended data. Æthereal sniff events, BE Sniff and GT Sniff
inspects flits, either BE or GT. Sniffing multiple flits can
emulate sniffing a complete packet or even complete mes-
sages. Their attributes are the queue identifier of the queue
from which the flit was sniffed and the BE or GT flit itself.

NoC Configuration Events. To achieve interprocessor
communication, the NoC must be configured. NoC con-
figuration events expose this configuration of the network,
enabling the system debugger to trace it. Æthereal Reserve
Slot and Free Slot events show when a certain slot in the
slot table of a R or NI has been reserved, respectively freed.
The attributes are the slot number and its value.

NoC Alert Events. In a faulty or ill programmed NoC,
problems like buffer overflow, congestion, starvation, live-
lock or deadlock can appear. Therefore, it is imperative to
monitor the network behavior for signals of overload or mis-
behavior. The Æthereal Queue filling event is specified tak-
ing into account the number of queues R has. In case of
a four port R, we have four attributes, namely the fillings
of the four queues. An End-to-end credit 0 event is a flow
control event showing when no buffer credits for a certain
connection remain, leading to a blocked IP. This could be
an indication of a possible problem. Its attribute is the con-
nection identifier.

Monitoring Service Internal Events cover all the
events used by the monitoring service for its own purposes,



Event Generator 
(EG)

MNI

Router

Sniffer (S)

Probe (P)

Figure 3. NoC Probe Architecture

such as synchronization or ordering of events, or to signal
extraordinary behavior of the monitoring service, e.g. mo-
nitoring data loss. For Æthereal, the total order of events
for one event generator is given by the timestamp. For effi-
ciency a timestamp is necessarily limited to a specific maxi-
mal value. After reaching this value, the timestamp counter
wraps itself. A Synchronization event is always produced
when the event counter wraps. The event has no attributes
and is only required to allow the proper synchronization for
one probe. Currently Æthereal works with a totally syn-
chronous NoC. The methods described in this paper will
also work with asynchronous NoCs but the timestamping
policy will be influenced. The event definition for the Æthe-
real setup allows to reliably reconstruct the overall partial
order of monitoring events.

In principle, many instantiations of the above taxonomy
for any given NoC are possible, depending on the level of
abstraction of the defined events and the monitoring pur-
pose.

5 Monitoring Probes

The generic probe architecture proposed consists of
three components, see Figure 3: a sniffer (S), an event gen-
erator (EG) and a monitoring network interface (MNI). EG
and MNI and their architectural details, e.g. timestamping
policy, are NoC dependent. The EG behaves like any other
IP connected to the NoC. Monitoring probes are hardware
implemented and are a design-time choice. The system de-
signer can decide what level of monitoring is desirable or
affordable.

We present the S, MNI and EG details for the Æthereal
NoC probes. A probe is attached to a R or to a NI. For
simplicity, we restrict ourselves to Rs in the following. For
NIs, there are no conceptual differences. The probe features
a modular design, and can be used without changing the
design of the R or NI. Figure 4 presents the detailed archi-
tecture of the probe. Programming the probe is very simple:
programming packets come through the NoC on any of the
R ports, e.g. I1 in Figure 4. They are transferred by the R
from I1 to its last output O5. The MNI depacketizes these
packets and configures itself via Configuration Network In-
terface Port(CNIP) and the EG via Configuration Port sub-
sequently. Using sniffed data the EG generates events and
transfers them to the MNI, via the Event Port, where they
are packetized. Packets are sent to the last input I5 of the R

Event Generator (EG)

MNI

Router (R)

programming
packetsevent traffic

packets

mmiommbd

Sniffer (S)

mmio
CNIP

Configuration PortEvent Port
Data
Port

I1

O5I5

O2

NoC port

DTL port

Probe (P)

Figure 4. Æthereal Probe Architecture

to be sent to the MSA, via e.g. O2 in Figure 4.
Sniffer. The task of the S is to get info from the R and of-

fer it as input data to the EG. These data are signals obtained
by means of non-intrusive SPY [18] like mechanisms. Ss
can be attached either to Rs or to the links between them.
We attach the S directly to Rs because we can have access
also to the R internals. The S delivers the signals to the EG
data port.

Event Generator. The task of the EG is to generate
timestamped events based on the input received from S. The
EG can generate instances of multiple event types. Event
types supported are a design-time choice, their selection is
a run-time choice. The EG passes the generated events to
the MNI. Currently, the Æthereal event identifier is an 8 bit
code. Æthereal events are not all of the same size. Event
attributes can be enabled or disabled allowing any combi-
nation of existing attributes for one event. The number and
size of attributes is given by the identifier. We use a 16
bit timestamp. The producer specifies the R that has the
probe generating the event attached to it. Currently, we are
using an 8 bit code, allowing for 256 producers. The identi-
fier, timestamp and producer together form one (32bit) word
matching the Æthereal link width. The attributes can have
any size in principle. In our current implementation, our
longest event with all attributes enabled is 5 words.

The current Æthereal EG has three ports, see Figure 4:
one data port, one configuration port and one event port.
The data port gets the input from the sniffer. The configu-
ration port, a slave memory mapped I/O port, is connected
to the MNI output port. The event port, a master memory
mapped block data port is connected to the MNI input port.
The generated events are posted in a 10 words EG queue
and from there are passed to the MNI. In case an MNI does
not accept any more data, events are dropped, in the EG at
creation.

Monitoring Network Interface. The MNI is a sim-
ple standard NI. The events generated in the EG are trans-
ferred to the MNI. The MNI packetizes these events and
sends them via the NoC to MSAs like any other data. The
MNI can be configured by any master attached to the NoC
through its configuration port CNIP [17] in order to set up



the connection for the monitoring packets. The MNI has 2
ports for communication with the EG: one master memory-
mapped I/O port and one slave memory-mapped block data
port. The master port connects to its slave pair in the EG
and the slave port connects to its master pair in the EG. The
MNI has one bidirectional 2GB/s link (I5 and O5 in Fig-
ure 4) to communicate with the R; it is independent of the
events fed to it. It is very small, with a 0.05mm2 synthe-
sized area in a 0.13 micron technology. For comparison an
arity 5 GT/BE router has an area of 0.26mm2 [16]. Packets
are queued internally in the MNI queue and then sent to the
R.

6 Probe Programming Model

The previous section explains the architectural features
of the probes. This section presents the associated program-
ming model. In general, it is important to decide when a
probe can be configured. Our goal is to make the service
available at arbitrary moments during run-time. The mo-
nitoring probes are programmed using the NoC itself. It
has been shown [17] how to configure the NoC at run-time,
taking advantage of the existing NoC memory-mapped in-
terface. The same technique is also used for programming
the probes, requiring no additional communication infras-
tructure.

Æthereal Model. For Æthereal, we are able to config-
ure the probes at run-time using memory-mapped I/O, i.e.
DTL [15]. The EG is a slave with a memory-mapped con-
figuration space slave interface connected to the NI. It can
be configured by means of simple standard write operations.
Multiple probes can be programmed independently in par-
allel.

Programming follows two conceptual programming
steps for each probe:

(1) Monitoring connection setup. Events are generated
in the EG and then packetized in the MNI. Packets con-
taining events must reach the MSA where the monitoring
service has been requested. This is done by setting standard
Æthereal connections from the MNI to the MSA.

(2) Probe setup. The set up is done in four steps: event
selection, attributes selection (per event type), start time se-
lection, and enable/disable probe.

7 Traffic Management

The monitoring traffic is composed of the probe con-
figuration traffic and the event traffic. Probe configuration
traffic is all traffic required to setup and configure the mo-
nitoring service. It includes the traffic required to configure
the probes and the traffic for setting up connections for the
transport of data from the probes MNI to the NI port which
requested the monitoring service. The probe configuration
traffic depends on the number of probes being setup. Event
traffic is all the traffic produced as a result of event gener-
ation in probes. The event traffic depends on the number of
probes setup as well as on the time a probe is enabled. The

monitoring traffic can use existing NoC communication ser-
vices or a dedicated interconnect, e.g. a debug bus. In case
existing NoC services are used, additional traffic is intro-
duced in the NoC but no extra interconnect is needed. In
case of a dedicated interconnect, no additional traffic is in-
troduced but more effort is required to design or use another
scalable interconnect.

The Æthereal monitoring traffic uses the NoC itself
and it is based on the existing Æthereal communication ser-
vices. In this way, no separate interconnect, for control as
well as for use, is required for the monitoring probes. There
are several choices:

Using GT services. All the monitoring traffic, e.g. all
the traffic generated by the probes in Figure 1 uses GT con-
nections. A connection is set up between the MSA and the
MNI of the specific probe. Each probe in the system uses its
own GT connection. In this way, even if the network is con-
gested, monitoring traffic can still reach the MSA at a guar-
anteed data rate, offering a real-time behavior of the mo-
nitoring service. BE user traffic can use the reserved slots
when no monitoring traffic is present. It is the safest op-
tion from the debugging point of view, but it may interfere
with existing BE traffic and the setup of new GT connec-
tions which is done through BE packets. Currently, we use
GT services as the implementation choice.

Using BE services. All monitoring traffic uses BE con-
nections. In case of congestion, it may not be possible for
monitoring traffic to reach the MSA at a predefined data
rate. The use of BE services is the least intrusive for exist-
ing traffic because it does not interfere with GT traffic, but
it may interfere with BE traffic. GT debug connections in-
terfere with user GT connections in the sense that they limit
the slot table allocation for the latter.

Using GT and BE services. When configuring the mo-
nitoring service, if more probes are used, it is possible to
use either GT or BE for each probe, in order to balance the
overhead of the monitoring service. For the distributed mo-
nitoring service shown in Figure 2, for example, the traffic
from all the probes in the subset of the dedicated IP can use
GT services and the traffic from all the probes in the subset
of the off-chip interface can use BE services.

8 Event Traffic Overhead

Media processing SoCs for Set-top Box applications or
digital TV consist of audio encoding or decoding, e.g. AC3,
and video processing functions, e.g. H263 or MPEG2 [6].
We present the monitoring event overhead for such a media
processing SoC using a NoC.

From [6] we learn that the typical task graph of such SoC
has approximately 200 connections all over the NoC. When
the application task graph changes, a partial or complete of
the NoC is needed. A complete reconfiguration means that
all the connections are torn down and a new set of connec-
tions is set up. Reconfiguration is required at a maximum
rate of once per second. A partial reconfiguration means



that only part of connections, e.g. half, are torn down and a
similar number of connections are set up.

In the case we monitor reconfiguration, we focus only
on two events, namely OpenConnection and CloseConnec-
tion events. The average cost of these events is two (32
bit) words. Each probe monitors the OpenConnection and
CloseConnection events, with all attributes enabled. One
flit comprises three words, one being the header and two
being the usefull payload. For a complete reconfiguration
the total usefull event payload is 3.2 KB, leading to an event
traffic of 4.8KB i.e:

200(connections) x 2(events) x 1(flit) = 1200 words

This example shows that the traffic overhead of the moni-
toring service is easily sustainable by mature NoCs if events
are carefully selected and enabled at the right time. E.g.
the raw bandwidth of the Æthereal NoC is 2 GB/s per link
and the monitoring traffic from our example is 4.8 KB/s,
approximately six orders of magnitude less. More events
enabled would lead of course to a greater traffic overhead.

9 Conclusion

In this paper, we have presented the concepts of a NoC
monitoring service, the first one described in the scientific
literature. This monitoring service offers communication
observability at run-time and can be used either for on-
chip/off-chip application and system-level debugging. The
monitoring service can be configured and used at arbitrary
moments during run-time.

The monitoring service is integrated in the NoC and
reuses the NoC communication services for configuration
as well as for the monitoring traffic. It can be instanti-
ated automatically together with the NoC, saving design
time. The monitoring service consists of probes attached
to NoC components. The generic architectural concepts of
the probe feature a modular design composed of a sniffer, a
monitoring network interface and an event generator.

Proof of concept is achieved via implementation for the
Æthereal NoC. Probes model the monitored information in
the form of timestamped events. We have presented our
event model, a generic event taxonomy for NoCs and one
of the possible instantiations for the Æthereal NoC. Run-
time programming of the probes is achieved via memory-
mapped configuration ports in the probe. Traffic manage-
ment is achieved by reusing the communication services of
the NoC. The cost of the monitoring traffic is low, being or-
ders of magnitude lower than the user traffic in the NoC in
case of monitoring a complete reconfiguration.

References

[1] ARM. Embedded Trace Macrocell Architecture Specification.
www.arm.com, 2002.

[2] L. Benini and G. De Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70–80, 2002.

[3] W. J. Dally and B. Towles. Route packets, not wires: on-chip in-
terconnection networks. In Proc. Design Automation Conference
(DAC), pages 684–689. IEEE, 2001.

[4] S. Gonzalez Pestana, E. Rijpkema, A. Rădulescu, K. Goossens, and
O. P. Gangwal. Cost-performance trade-offs in networks on chip: A
simulation-based approach. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE). IEEE, Feb. 2004.

[5] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko,
A. Rădulescu, E. Rijpkema, E. Waterlander, and P. Wielage. Guar-
anteeing the quality of services in networks on chip. In A. Jantsch
and H. Tenhunen, editors, Networks on Chip, chapter 4, pages 61–
82. Kluwer, 2003.

[6] K. Goossens, O. P. Gangwal, Röver, and A. Niranjan. Interconnect
and memory organization in SOCs for advanced set-top boxes and
TV — evolution, analysis, and trends. In J. Nurmi, H. Tenhunen,
J. Isoaho, and A. Jantsch, editors, Interconnect Centric Design for
Advanced SoC and NoC, chapter 15, pages 399–423. Kluwer, 2004.

[7] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Net-
works on silicon: Combining best-effort and guaranteed services.
In Proc. Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 423–425, Mar. 2002.

[8] P. Guerrier and A. Greiner. A generic architecture for on-chip
packet-switched interconnections. In Proc. Design, Automation and
Test in Europe Conference and Exhibition (DATE), pages 250–256.
IEEE, 2000.

[9] IEEE-ISTO 5001TM. The NEXUS 5001 Forum Stan-
dard for a Global Embedded Processor Debug Interface.
www.nexus5001.org, 2003.

[10] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture
for networking systems on chips. IEEE Micro, 22(5):36–45, Sept.
2002.

[11] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrja, and A. Hemani. A network on chip architec-
ture and design methodology. In Proc. Symposium on VLSI. IEEE,
2002.

[12] M. Mansouri-Samani and M. Sloman. A configurable event service
for distributed systems. In Proc. 3rd Int’l Conference on Config-
urable Distributed Systems, pages 210–220. IEEE, 1996.

[13] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The
Nostrum backbone - a communication protocol stack for networks
on chip. In Proc. Int’l Conference on VLSI Design, pages 693–696.
IEEE, 2004.

[14] S. Murali and G. De Micheli. Bandwidth-constrained mapping of
cores onto NoC architectures. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE). IEEE, 2004.

[15] Philips Semiconductors. Device Transaction Level (DTL) Protocol
Specification Version 2.2, 2002.

[16] E. Rijpkema, K. G. W. Goossens, A. Rădulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, and E. Waterlander. Trade offs in the de-
sign of a router with both guaranteed and best-effort services for
networks on chip. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 350–355. IEEE, Mar.
2003.

[17] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and
P. Wielage. An efficient on-chip network interface offering guar-
anteed services, shared-memory abstraction, and flexible network
programming. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE). IEEE, 2004.

[18] B. Vermeulen, S. Oostdijk, and F. Bouwman. Test and Debug Strat-
egy of the PNX8525 Nexperia Digital Video Platform System Chip.
In Proc. Int’l Test Conference (ITC), pages 121–130. IEEE, 2001.


