
Cost-Performance Trade-offs in Networks on Chip:
A Simulation-Based Approach

Santiago Gonzalez Pestana, Edwin Rijpkema, Andrei Rădulescu, Kees Goossens and Om Prakash Gangwal
Philips Research Laboratories, Eindhoven, The Netherlands

E-mail: santiago.gonzalez.pestana@philips.com

Abstract

A challenge facing designers of systems on chip (SoC) contain-
ing networks on chip (NoC) is to find NoC instances that balance
the cost (e.g. area) and performance (e.g. latency and through-
put). In this paper we present a simulation-based approach to
address this problem. We use XML to instantiate network compo-
nents (routers, network interfaces) and their composition. NoCs
are evaluated in terms of cost and performance by sweeping over
different parameters (e.g. network topology, network interface
queue depth). We then show, how we can obtain trade-off plots
by using the results obtained with our simulation environment. Fi-
nally, by means of two examples we illustrate how trade-off plots
can help the NoC designers in selecting the right network based
on a set of different constraints.

1 Introduction
The increasing complexity of systems-on-chip (SoC) together

with the increasing wiring problems of newer IC technology gen-
erations make networks on chip (NoC) a promising replacement
for busses and dedicated interconnect [3, 4, 9]. A NoC is an on-
chip communication infrastructure that provides communication
services to the IP blocks that connect to it. Examples of these ser-
vices are connections with in-order data delivery and connections
with end-to-end flow control.

NoCs are composed ofnetwork interfacesand routers. Net-
work interfaces (NI) are the service access points of the network.
These services are made available at one or more ports of the NIs.
The routers provide the connectivity in the network; their job is to
transport the data between the NIs.

The design of a NoC involves the design of NIs and routers
together with the topology that specifies the way in which they
are interconnected. The design space of designing NoCs is huge,
spanned by the many parameters that describe the NIs, routers, and
topology [13,14]. Examples are the number of connections per NI,
the depth of the queues in the routers, and the arity of a tree.

Chip design is typically characterized by tight cost constraints
and high performance demands. Our goal is to help the designer
in finding the right NoC. The right NoC is one that fulfills all cost
and performance constraints and optimizes some other cost or per-
formance metric. To fulfill the designer’s need of making cost-
performance trade-offs, we propose a method to obtain both cost
and performance numbers of NoCs instances in the design space
and a way to present these numbers.

We advocate an approach that relies on both VLSI study and
simulation. The VLSI study is used to derive a model for the phys-

ical characteristics of a NoC, such as the silicon area and clock
frequency of a NI as function of its parameters e.g. number of
ports. Simulation then is used to generate performance numbers
of the NoC as a whole. We use simulation for this because design-
ing hardware for each NoC in the design space is unrealistic and,
analytic methods make too many assumptions about the network
and traffic to get accurate values for a real system.

To provide the performance numbers we have developed a sim-
ulator that can rapidly evaluate the performance of many NoC in-
stances that are built from parameterized components. We auto-
matically generate NoC instances for many points in the design
space. These NoCs are specified in the XML and their perfor-
mance is evaluated without the need to recompile the simulator.

To prove our approach, the paper describes a case study in
which synthetic workloads are offered to the NoC. Synthetic work-
loads are used because it makes the system parameterizable. In
the case study we evaluate the cost and performance numbers of a
number of network instances and show how to use these numbers
to find the best NoC that meets the user requirement.

The paper is organized as follows. Section 2 describes that
we span the NoC design space in terms of parameterized network
components and topology. Section 3 describes our approach to ob-
tain the cost and performance numbers that allow the user to make
design trade-offs. Section 4 deals with the metrics that are of inter-
est to the NoC designer and describes a simple NoC cost model.
Sections 5 describes in detail the setup of a case study in which
for a synthetic workload the best NoC must be found. Section 6
demonstrates our proposed approach: (1) cost and performance
numbers are derived for a number of NoC instances, (2) the num-
bers are presented in a convenient way, and (3) the best network is
selected for two example sets of requirements.

2 Network-on-chip design space

A network on chip (NoC) is composed of two types of compo-
nents: routers (also called switches) and network interfaces (NI).
Their composition is described by the topology in which these
components are interconnected.

The NoC design space is spanned by choosing the router and
NI architectures and the topology, and their corresponding param-
eters.

To illustrate the design space for a given router and NI archi-
tecture we use the network in Figure 1 as an example. The figure
shows six IP blocks connected via four NIs to a four-router net-
work having a mesh topology. In subsequent sections we describe
the basic components and the topology to illustrate their parame-
terization.

1

R

RR

R NI

NI

NI

NI
off−chip
interface

memory

dedicated
IP

cache

embedded
FPGA

CPU

S

M

S

S

M

M

network

Figure 1. Example of SoC using a NoC.

scheduler

scheduler

pack

de−pack

(a) (b)

Figure 2. Example of NI architecture (a) and router architecture (b).

2.1 Network interface
A NI is described by two sets of parameters, i.e., parameters

that describe the architecture of the NI and parameters that de-
scribe the instance of a given NI architecture. Two examples of
the former set of parameters are whether services are connection
based or not, and whether end-to-end flow-control is present or
not. Clearly, what the set of the latter kind of parameters is, de-
pends on what the actual architecture is. In this paper we focus on
the latter set of parameters and fix the NI architecture to the Æthe-
real NI described in [13], of which Figure 2(a) shows an example.

This NI architecture provides connection-based services made
accessible at one or more ports. At the ports, shown at the left-
hand side of Figure 2(a), a transaction-level protocol is used. That
is, IPs connected to these ports issueread or write-like transac-
tions. A write transaction consists of the write command together
with the data. The NI considers the (write-command,data) pair as
a message to be sent over the network. For a read, the NI con-
siders the read command and the corresponding response of the
data as two separate messages. The size of a message is expressed
in bytes. The relation between connections and messages is that
related messages, e.g. an audio stream of (write-command,data)
messages from an audio decoder to an off-chip interface, are writ-
ten in the same connection queue. For this queue, properties like
in-order lossless delivery are given, but also guaranteed through-
put (not dealt with in this paper, see [12]) can be provided. The
messages in the queues are scheduled and are subsequently pack-
etized to be transfered over the network of routers. The NI has
two queues per connection, one for outgoing and one for incom-
ing traffic. The NoC services are accessible via one or more ports
of the NI and there are one or more connections per port.

The parameters describing the instance of the NI architecture
are: number of ports, number of connections for each of these
ports individually, and depths of the queues for each of the con-
nections individually. Moreover, the depths of the incoming and
outgoing queues is parameterized individually as well. The NI in-
stance in Figure 2(a) has two ports, three connections for the first

port and two connections for the second port. The depths of all the
queues is set to five words, where a word is four bytes.

2.2 Router
A router has two sets of parameters similar to the NI. The set

of parameters that describe the architecture include routing algo-
rithm, routing mode, buffering architecture, and schedule algo-
rithm. In this paper we fix the architecture to the Æthereal router
architecture described in [11] of which an instance is shown in
Figure 2(b). We only are interested in the Best Effort (BE) part of
that router architecture.

The router is packet-switched and uses source routing, i.e. the
routers use the route information that the NIs have put in the pack-
ets. It uses wormhole routing and input queuing.

The arity of the router is the number of input ports, which we
take equal to the number of output ports. At every input port there
is a queue that has a parameterized depth. So, parameters that
describe the instance of the router architecture are arity and depth.
The router instance in Figure 2(b) has arity four, and has queues
of five words deep.

2.3 Network on chip
A NoC is composed of NI and router instances. To complete

the NoC description we also must know the topology in which
components are interconnected. In this paper we focus on regu-
lar topologies i.e., 2D-meshes andk-ary trees andk-ary fat-trees.
Each of these topologies is parameterized by its own set of param-
eters. A 2D-mesh is parameterized in its width and height, and a
tree and fat-tree by their arity and height [16].

In the network topologies envisaged in this paper we make
the following assumptions. In all topologies the links are bidi-
rectional. In meshes there is a NI at every router, and ink-ary
(fat-)trees there arek NIs at every leaf router.

Note that the NoC design space as a whole is spanned by the
selection of the topology and the NI and router architectures, and
their respective parameters.

3 Networks on Chip design approach
In this section we propose a network-on-chip design-flow ap-

proach that guides the designer through the SoC design process
allowing him to concentrate on the performance results. Perfor-
mance results are obtained by using simulation results. Later in
this section we address in detail the interface with the simulator in
order to follow the proposed design approach. We use SystemC
to [1] to build our simulator.

SystemC provides us different abstraction levels together with
the flexibility to model, develop and simulate all parts composing
a network on chip (e.g. routers, network interfaces) and exter-
nal IP blocks connected to it. A number of simulators and design
approach tuned to different applications (e.g. real time, shared-
memory) can be found in the literature [7,9,15,17]. A new simu-
lator environment has been developed to provide a flexible compo-
sitional platform to experiment with a large number of components
and their parameters. The environment natively is not oriented to
any specific application or topology. Different applications us-
ing different services can be mapped without changing the system
core. NoC parameters (defined by the user) define the NoC behav-
ior. We use a transaction-level model (TLM), which allows us to
describe hardware system components at a high level of abstrac-
tion. Although the results are less accurate than using register-
transfer-level (RTL) simulations [10], we obtain higher simulation
speed.

2

The simulator itself models the NoC at the level of flits, giving
a good trade-off between simulation accuracy and speed.

results
performance

simulator

instantiation
network

XML parser

requirements

connections

mapping

NoC topology

VHDL NoC
description

ToolUser

Figure 3. Design flow used in our environment.

To provide maximal flexibility to the designer in the parameter
description, we propose the design flow shown in Figure 3. The
designer concentrates on specifying three files (topology, mapping
and connection) that are used by the XML parser to instantiate the
SoC to be simulated. They describe the network and IP blocks
along with their parameters. As an output we obtain a set of files
containing performance results and statistics from the network.
The designer can evaluate each NoC independently or automate
the design flow by using our simulator to evaluate a large number
of topologies, analyze them and select the most appropriate for a
given set of constraints.

If the constraints are not (satisfactory) met (e.g.cost-
performance requirements) the NoC designer can steer design de-
cisions (e.g. mapping). In the next section we explain how we
instantiate a general SoC design with the three files, which contain
the parameters of all components and how they are interconnected
in the NoC.

M2

S2

NI00

NI03NI01

P0

P2

P1

P0 P0

P2

P1

P1

Port0 Port2

Port1 Port3

P0

P0

P1

NI02

M1

M3

S3

R0 R2

R1 R3

Link0_2

Link0_0

Link1_0

Link1_3

Link0_1 Link2_3

Link3_0

Link2_0

P0

P0

S1

Figure 4. Example of SoC.

3.1 Interface to the simulator
The interface to the simulator environment is based on three

files. The files are described using the Extensible Markup Lan-
guage (XML). XML has among other features the advantages of
being a standard language, it is suitable to organize and structure
data, it is human readable, and parsers are available to automa-
tize the instantiation process. The XML system-on-chip descrip-
tion provided by the user is also used to generate VHDL code to
have consistent views of the simulator and hardware implementa-
tion. The main motivation for using an XML-based description of
NoC is twofold (a) flexibility to describe NoC components and (b)
avoiding long re-compilation times, because we instantiate com-
ponents at run time.

The use of three files to describe every component and their
interrelations allow us to come with a flexible and well-defined

way to decouple network infrastructure components (e.g. routers,
network interfaces) from user-defined modules (e.g. traffic gener-
ators, IP blocks). A set of basic components to experiment with
(e.g. routers, network interfaces and traffic generators) are pro-
vided. Additionally, the user can supply a library of IP blocks or
network elements that can be configured by means of attributes in
the XML file and be instantiated at run time. The description and
content of the following files use Figure 4 as an example.

Topology file: It contains the NoC topology description. We
specify the routers and network interfaces, and the way they are
interconnected (eg. mesh, ring, fat tree). The following parame-
ters are given in the description. For the router, the type of router
(e.g. input queuing, virtual output queuing), queue depth, num-
ber of input/output ports. For the network interface we specify the
number of network interface ports, the number of connections and
the router to which the network interface is connected.

In Figure 5 we can see part of the topology definition for the
system shown in Figure 4. We have defined router “R0”, which
is a 3-arity input-queued router, with a queue depth of 12 words.
From the description see that “Link00” connects network inter-
face “NI00” to “R0” (links are bidirectional). A network interface
can connect more than one IP block. In our example “NI00” con-
tains one master1 IP block as well as one slave IP block.

<RouterIQ id="R0" iq="12">
<R_Port id="P0" link="Link0_0"/>
<R_Port id="P1" link="Link0_2"/>
<R_Port id="P2" link="Link0_1"/>

</RouterIQ>
<NI id="NI00">

<NI_Port id="Port0" link="Link0_0"/>
<MasterNIP id="P0" connections="2"/>
<SlaveNIP id="P1" connections="2"/>

</NI>
<NI id="NI02">

<NI_Port id="Port2" link="Link2_0"/>
<SlaveNIP id="P0" connections="2"/>

</NI>

Figure 5. Example of a topology description.

Mapping file: Once the topology has been selected, we have to
describe how IP blocks are going to be connected to the NoC. The
mapping file provides a description of which blocks are connected
to which network interface. In the same way as in the topology
file, XML attributes are used do describe parameters that can be
modified easily without the need of changing the simulator code.

Part of the XML mapping file is shown in Figure 6. We have
declared a master module of type “TG” (Traffic Generator) with
some extra parameters such as the type of traffic distribution (nor-
mal distribution), speed, or message size. This master module is
connected to the NI “NI00” via the port “P0”.

<Master id="M1" type="TG" DIST="Nor" SPEED="8" SZ="128">
<MasterNIP ni="NI00" id="P0"/>

</Master>
<Slave id="S3" type="Memory">

<SlaveNIP ni="NI03" id="P0"/>
</Slave>

Figure 6. Mapping description example.

Connection File: To characterize the system completely, a set
of connections is specified. Connections are established between
one master network interface port and one or more slave network

1A master starts a transaction which is executed by the slave.

3

interface ports. Currently static connections are used, but in the fu-
ture, our simulation environment will allow dynamic handling of
connections. We use connections to connect one master IP block to
one slave IP block; although other combinations are possible [12]
we only use the most simple of them. Connections are opened
with a set of properties (e.g. message integrity, transaction com-
pletion, transaction ordering) and parameters (e.g. routing path).
The simulator provides a shortest path routing algorithm in case
no path is specified in the file.

Figure 7 shows several connection configurations. Masters and
slaves have their own connections identifiers for a given connec-
tion. As an example we show a connection between M2 and S3,
the master identifies that connection with id 3 and the slave with
id 2. The channel properties are Guaranteed Throughput (GT) for
outgoing traffic and Best Effort (BE) for incoming traffic. For GT
traffic we have to specify the slots we reserve to obtain the re-
quired bandwidth/latency guarantees (e.g slots=“2 5”). Although
we have flexibility to use GT traffic, in our experiments we only
consider BE traffic.

<Connection master="M2" cidm="3" slave="S3" cids="2">
<Request type="GT" slots="2 5" path="1 0"/>
<Response type="BE" path="1 0"/>

</Connection>
<Connection master="M3" cidm="2" slave="S2" cids="3">
</Connection>

Figure 7. Part of the description of a connection file.

4 Cost and performance metrics
Due to the large design space of NoCs, obtaining a good bal-

ance of parameters such as cost and performance is a major chal-
lenge [2, 5, 8]. To find this balance the system designer needs to
trade off cost and performance numbers to find, for example, the
lowest-cost NoC that meets all performance requirements or the
NoC that provides the highest throughput but still meets latency
and area constraints.

What metrics should be optimize normally depend on the appli-
cation that makes use of the NoC. For example, in portable devices
the main concern typically is area and/or power, whereas for high-
end video processing throughput and latency are more important.

In previous section we described how to obtain performance
numbers, but we also must answer the question what exactly has
to be traded off. This means that we need to clearly define the
cost and performance metrics. The cost and performance numbers
depend on the selected network components and the topology, and
the setting of their corresponding parameters. Section 4.1 deals
with cost metrics and introduces a simple cost model. Section 4.2
deals with performance metrics.

4.1 Cost metrics and cost model
NoC cost metrics relate to the physical aspects of the NoC. Ex-

amples are silicon area, power consumption, and bit-error rate due
to cross-talk and external influences. As cost modeling is work in
progress, we use for this paper a simple cost model for the silicon
area metric. Silicon area is measured inmm2.

To model the area of the NoC we use a zero wire cost model,
that is, the area of the NoC is taken to be equal to total area of its
components. The wires area caused by interconnecting the com-
ponents are thus ignored in this paper.

In Section 2 we have seen that the network components, i.e. the
routers and NIs, are parameterized. To allow a rapid evaluation of

the NoC area, we propose to derive the area of the router and NI
as function of their parameters. For a particular NoC instance all
parameters are fixed and these values then can be used in the area
functions of the individual components.

The area functions are obtained by synthesis of RTL models of
the router and NI architecture. We have done this for the architec-
tures introduced in Section 2 as follows. We have a basic assump-
tion on the form of the cost function as function of the parameters
of interest. For example consider the router area as function of its
arity. There are parts of the router whose area is linear in the arity
(e.g. queuing) and parts that are quadratic in the arity (e.g. the
switch inside the router), e.g. there is a part of the router that is
linear in the arity (the control and queuing path) and a part that is
quadratic in the arity (the switch). So, we expect the area to be of
the formα1 · a2 +α2 · a+α3. By synthesizing for several values
of the arity we compute the best values forα1, α2 andα3.

A router having 48 words input queue depth has been synthe-
sized in a0.13µm CMOS process for a clock frequency of 500
MHz and data path width of 32 bits (for each link/port). The re-
sulting cost model given in terms of aritya is:

AR(a) = 0.808a2 + 23a (10−3mm2) (1)

Similarly, letp be the number of ports of the NI,c be the num-
ber of connections per port, andq be the depths of the queues in the
NI. By synthesizing for several values of number of ports, connec-
tions per port, and queue depthsq (with a frequency of 500 MHz
and 32 bits wide data path) we derived the following area function.

ANI(p, c, q) = 19.6pc+ 0.72pcq + 4.8 (10−3mm2) (2)

4.2 Performance Metrics
There are several performance metrics that may be of impor-

tance. For the system designer that must select a NoC these are
the metrics that reflect the total system behavior at the level of the
offered services. Those are, throughput offered at the NI ports and
end-to-end message latency.

Throughput is measured at the ports of the network. It is the
average amount of user data that is accepted by the network on that
port in a certain amount of time. Aggregate throughput is the sum
of the throughputs at all network ports. Throughput is measured
in bytes per second.

Latency is defined as the difference between the time at which
the first word of a message has been offered to the network and
the time the last word has been delivered to the destination. That
is the so-calledtotal latency(LT). Total latency is composed of
thewaiting latency (Lw) andnetwork latency (Lnet). If the NI
has no space to accept data coming from the IP, the data is queued
outside the network. Theoffered load (data produced by the IP)
may be higher than theaccepted load(i.e. accepted by the NI),
andLw ≥ 0.

5 Case study: set-up
In this and the next section we use a case study to demonstrate

our approach. The goal is to find the best network that meets the
user requirements for a given application. We first describe the ap-
plication model that we use. Then we describe the portion of the
design space that we want to explore. Finally the cost and perfor-
mance numbers are presented and their usefulness in selecting the
right network is demonstrated.

4

5.1 Application model
In this case study the focus is on data streaming. To allow

a simple scaling of the application, we have chosen a synthetic
workload. This workload is generated bytraffic generators. A
traffic generator is the combination of atraffic masterand atraffic
slave.

In this paper we fix the write transactions data payload to 8
bytes. When these transaction are issued and to whom is described
by thetemporalandspatial distribution, respectively. In order to
let the network not influence these distributions a master has a
(logically) infinite buffer for each slave it communicates with. We
also assume that slaves are infinite fast to avoid IP-NoC interac-
tions (e.g. shortage of flow-control credits).

The temporal distribution describes the time at which new write
transactions are issued. We use a normal distributionN(µ, σ),
whereµ is the mean inter-arrival rate andσ is the variance. The
meanµ is directly derived from the required throughput, e.g., to let
the traffic master produce data at a rate of 200 Mbyte/s, the value
of µ is 200/8 = 25 mega transaction per second. We further fix
the varianceσ to 10% to create some jitter in the data production
rate.

The spatial distribution of a traffic master describes how the
transactions are distributed toward the slaves. We use a uniform
distribution.

To connect a single traffic generator to a network interface we
require two network interface ports. Each traffic master issues
write transactions to the traffic slave of every other traffic gen-
erator. The masters communicate to the slaves via connections.
There is thus a single connection for each master-slave pair.

5.2 Experiments to realize
In this paper there are16 traffic generators that communicate

as just described. Note that we thus require16 · 15 = 240 connec-
tions which is more than what is found for typical applications of
this size. Since each traffic generator requires two network inter-
face ports, we thus must find the best network that has32 network
interface ports.

To find this network we will vary three free NoC parameters,
i.e., network topology, number of ports per NI, and depth of the
buffers in the NIs. Thus, a NoC is completely characterized by the
triple<topology, #NIPs, queue depth> and we refer to them using
this notation. E.g., the mesh network instantiated with 4 ports per
NI and queue depth of 8 is referred to as<mesh,4,8>.

The topologies we evaluate are meshes, binary trees, and fat-
trees. Because the number of total ports is constant (32), the size
of these topologies depends on the number of ports per network
interface. The number of ports per network interface does not sig-
nificantly change the total NI cost but it does influence the size of
the network.We evaluate cost and performance for networks with
2 and 4 ports per network interface.

The buffer depth in the NIs plays a paramount role both in
cost and performance. We evaluate cost and performance with NI
queues with a depth of 4 and 8 words.

For a mesh with four ports per NI we take a3× 3-mesh and do
not connect an NI to one of the routers at the corner of the mesh,
this gives us a total of8 NIs and thus 32 NI ports in total (assuming
one NI per router). With two ports per NI we take a4 × 4-mesh,
having one NI per router, and 2 ports per NI thus in total we have
32 NI ports in total.

For the binary (fat-)tree with four ports per NI we need three
levels of routers. With two ports per NI, we need four levels. For

both topologies we assume there are two NIs per router at the bot-
tom of the tree.

6 Case study: results
In this section we illustrate with an example the design ap-

proach and methodology that we proposed in this paper. We use
our cost model and simulation environment to rapidly generate
cost and performance numbers for the cases showed in previous
section. To allow the selection of the right network the total set
of cost and performance numbers are presented in a single scatter
plot.

To understand the trade-offs that are captured in the scatter plot
we first present performance numbers of a single topology for dif-
ferent number of NI ports and different NI queue depths. More-
over, these performance numbers also explain how the scatter plot
is obtained.

We present NoC performance in the so-called Chaos Normal
Form (CNF) [6]. In CNF performance is presented by pair of plots:
one being thetotal accepted loadversustotal offered loadplot and
the other being thelatencyversustotal offered load. Total offered
load is the sum of the loads offered at every network interface port,
and total accepted load is the part of the offered load that the NIs
actually accept.

Figures 8 and 9 show the performance numbers of the
<mesh,p,d> for p = 2, 4 andd = 4, 8. In Figure 8, all curves
start linearly with accepted load equal to offered load. The point at
which the curves start to bend is the saturation point of the NoCs.
We observe that both fewer ports per NI and deeper queues in the
NI results in a higher saturation point and hence total accepted
load.

In Figure 9 we can observe a steep increase in latency close to
the saturation point. Typically networks are used below the satu-
ration point to obtain acceptable latency. The pair of CNF plots
can be used to obtain the maximum throughput for a given latency
constraint. Figure 9 is used to find the offered load given the la-
tency. The accepted load for this latency is equal to the offered
load when we are below the saturation point.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

Total Offered Load (Mbytes/sec)

To
ta

l A
cc

ep
te

d
Lo

ad
 (M

by
te

s/
se

c)

 Mesh Topology

<Mesh,2,8>
<Mesh,2,4>
<Mesh,4,8>
<Mesh,4,4>

Figure 8. Total accepted load versus Total offered load for different
mesh instances.

By using Figures 8 and 9 for our three topologies of interest
we have derived a scatter plot as it is shown in Figure 10. For
various latency bounds we use the NoC performance in CNF to
obtain the accepted load. For each network we use the cost model
to compute the NoC area. As each different NoC has its own area,
the horizontal axis plots both area (mm2) and NoC instance. We

5

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

Total Offered Load (Mbytes/sec).

A
ve

ra
ge

 N
et

w
or

k
La

te
nc

y
(n

s)
.

 Mesh Topology − Latency.

<Mesh,2,8>
<Mesh,2,4>
<Mesh,4,8>
<Mesh,4,4>

Figure 9. Average Network Latency versus Total offered load for
different mesh instances.

have joined all points corresponding to the same latency constraint
by a line for readability.

11.3 11.5 11.812.012.1 12.7 12.9 13.213.313.5 13.7 15.1
0

1

2

3

4

5

6

Cost−Performance Trade−offs (given a latency constrain)

Area cost (mm2)

M
ax

im
um

 A
cc

ep
te

d
Lo

ad
 (G

by
te

s/
se

c)

<T
re

e,
4,

4>

<M
es

h,
4,

4>

<F
at

−t
re

e,
4,

4>

<T
re

e,
2,

4>

<M
es

h,
2,

4>

<T
re

e,
4,

8>

<M
es

h,
4,

8>

<F
at

−t
re

e,
4,

8>

<T
re

e,
2,

8>

<M
es

h,
2,

8>

<F
at

−t
re

e,
2,

4>

<F
at

−t
re

e,
2,

8>
 <500ns

<60ns

<35ns

Figure 10. Cost performance trade-off.

Due to the all-to-all communication pattern of the case study,
the total number of buffers is quadratical in the total number of
NI ports, hence the cost figures plotted in Figure 10 are unrealisti-
cally high but they ca be used to illustrate the method. In typical
applications we expect an almost linear dependence, and therefore
lower cost.

The user can achieve cost-performance trade-offs in several
ways. Typically, a system designer must meet a set of constraints
and wants to optimize for some other parameters. Below we give
two examples and use the scatter plot in Figure 10 to find the best
network.

Example 1: Find the lowest area network with the constraints
that it provides a total accepted load of at least 2Gbyte/s with
an average latency of at most 500ns. From the 500ns curve
we select the left most point above the load=2Gbyte/s line, i.e.
<mesh,4,4>. Note that because our simulation environment col-
lects data as function of offered load, we can extract more latency
bounds that the ones represented in Figure 10, without the need of
re-simulation.

Example 2: Find the NoC that provides the highest accepted
load, constrained by an area of12.5mm2 and an average latency
of 60ns. From the 60ns curve we select the highest accepted load
at the left of the area=12.5mm2 line,i.e. <mesh,2,4> giving an

accepted load of 4Gbyte/s.

7 Conclusions
In this paper, we propose a method to help the designer in find-

ing the right NoC given a set of constrains. To do so, we first
introduce cost and performance metrics that allow a quantitative
evaluation of NoCs. We focus on the metrics that are visible to the
NoC user, such as silicon area, latency, and offered/accepted load.

To obtain both cost and performance numbers we use VLSI
study to provide NI and router areas as functions of arity and buffer
sizes, and number of ports and connections and buffer sizes, re-
spectively. NoC cost is obtained by summing (assuming zero-cost
wires) the cost of the NIs and routers. Performance numbers (la-
tency and throughput) are obtained using simulations. The simula-
tor is optimized for fast simulation of many NoC instances; it uses
run-time network instantiation, and both transaction-level model-
ing and flit-level simulation.

The performance numbers obtained from the simulation and
cost numbers from the cost model are used to demonstrate the
trade-offs of performance (throughput and latency) versus area.
The cost-performance numbers allow the trade-offs for various re-
quirements. We demonstrate this with a case study in which the
best network must be selected for a synthetic workload.

References
[1] Functional Specification for SystemC 2.0. www.systemc.org, 2001.
[2] G. Apostolopoulos et al. Quality of service based routing: a perfor-

mance perspective. InSIGCOMM ’98, pages 17–28, 1998.
[3] L. Benini et al. Powering networks on chips.ISSS, pages 33–38,

2001.
[4] L. Benini et al. Networks on chips: A new SoC paradigm.IEEE

Computer, 35(1):70–80, 2002.
[5] E. Bolotin et al. QNoC: QoS architecture and design process for

network on chip.The Journal of Systems Architecture, Dec. 2003.
[6] J. Duato et al.Interconnection Networks, An Engineering Approach.

Morgan Kaufmann, 2003.
[7] M. Forsell. Advanced simulation environment for shared memory

network-on-chips. In20th IEEE Norchip Conference, 2002.
[8] J. Hu et al. Energy-aware mapping for tile-based NoC architectures

under performance constraints. InASP-DAC 2003, 2003.
[9] S. Kumar et al. A network on chip architecture and design method-

ology. In ISVLSI, 2002.
[10] S. Pasricha. Transaction level modelling of SoC with SystemC 2.0.

2003.
[11] E. Rijpkema et al. Trade offs in the design of a router with both

guaranteed and best-effort services for networks on chip.DATE,
2003.

[12] A. Rădulescu et al. Communication services for networks on chip.
In S. Bhattacharyya, E. Deprettere, and J. Teich, editors,Domain-
Specific Embedded Multiprocessors. Marcel Dekker, 2004.

[13] A. Rădulescu et al. An efficient on-chip network interface offering
guaranteed services, shared-memory abstraction, and flexible net-
work programming.In DATE, 2004.

[14] I. Saastamoinen et al. Buffer implementation for Proteo network-
on-chip. InISCAS, pages 113–116, vol.2, 2003.

[15] G. Varatkar et al. Traffic analysis for on-chip networks design of
multimedia applications.In DAC, 2002.

[16] A. Varma and C. Raghavendra.Interconnection Networks for Multi-
processors and Multicomputers: Theory and Practice. 1994.

[17] D. Wiklund et al. SoCBUS: Switched network on chip for hard real
time embedded systems. InIPDPS, 2003.

6

