
An Efficient On-Chip Network Interface Offering Guaranteed Services,
Shared-Memory Abstraction, and Flexible Network Configuration

Andrei R̆adulescu, John Dielissen, Kees Goossens, Edwin Rijpkema, and Paul Wielage
Philips Research Laboratories, Eindhoven, The Netherlands

Abstract

In this paper we present a network interface for an on-chip
network. Our network interface decouples computation from com-
munication by offering a shared-memory abstraction, which is in-
dependent of the network implementation. We use a transaction-
based protocol to achieve backward compatibility with existing
bus protocols such as AXI, OCP and DTL. Our network interface
has a modular architecture, which allows flexible instantiation. It
provides both guaranteed and best-effort services via connections.
These are configured via network interface ports using the net-
work itself, instead of a separate control interconnect. An exam-
ple instance of this network interface with4 ports has an area of
0.143mm2 in a 0.13µm technology, and runs at500 MHz.

1 Introduction
Networks on chip (NoC) have been proposed as a solution to

the interconnect problem for highly complex chips [2, 3, 5, 9, 12,
14, 15, 17, 21, 27]. NoCs help designing chips in several ways:
they (a) structure and manage wires in deep submicron technolo-
gies [2, 3, 9, 12, 21], (b) allow good wire utilization through shar-
ing [5, 9, 12, 21], (c) scale better than buses [14, 21], (d) can be
energy efficient and reliable [2, 5], and (e) decouple computation
from communication through well-defined interfaces, enabling IP
modules and interconnect to be designed in isolation, and to be
integrated more easily [2,13,21,24]

Networks are composed ofrouters, which transport the data
from one place to another, andnetwork interfaces(NI), which im-
plement the interface to the IP modules. In a previous article [21],
we have shown the trade-offs in designing a cost-effective router
combining guaranteed with best-effort traffic. In this paper, we
focus on the other network component, the network interface.

Network interface design has received considerable attention
for parallel computers [8,25], and computer networks [6,7]. These
designs are optimized for performance (high throughput, low la-
tency), and often consist of a dedicated processor, and large
amount of buffering. As a consequence, their cost is too large
to be applicable on chip.

On-chip network interfaces must provide a low-area overhead,
because the size of IP modules attached to the NoC is relatively
small. Designs of network interfaces with a low area have been
proposed [4, 28]. However, they do not provide throughput or
latency guarantees, which are essential for a compositional con-
struction of complex SoCs.

Our NI is intended for systems on chip (SoC), hence, it must
have a low area. To enable the reuse of existing IP modules, we
must provide a smooth transition from buses to NoCs. A shared-

memory abstraction via transactions (e.g., read, write) ensures this.
Further, we also have to provide a simple and flexible configura-
tion, preferably using the NoC itself to avoid the need for a sepa-
rate scalable interconnect.

We achieve a low-cost implementation of the NI by implement-
ing the protocol stack in hardware, and by exploiting on-chip char-
acteristics (such as the absence of transmission errors, relatively
static configuration, tight synchronization) to implement only the
relevant parts of a complete OSI stack. A hardware implementa-
tion of the protocol stack provides a much lower latency overhead
compared to a software implementation. Further, a hardware im-
plementation allows both hardware and software cores to be reused
without change [4].

Our NI provides services at the transport layer in the ISO-OSI
reference model [22], because this is the first layer where offered
services are independent of the network implementation. This
is a key ingredient in achieving thedecoupling between com-
putation and communication[16, 24], which allows IP modules
and interconnect to be designed independently from each other.
We provide transport-layer services by defining connections (e.g.,
point-to-point or multicast) configured for specific properties (e.g.,
throughput, ordering).

We offer guaranteed servicesas they are essential for a com-
positional construction (design and programming) of SoC. The
reasons are that they limit the possible interactions of IPs with
the communication environment [12, 13], separate the IP require-
ments and their implementation, and make application quality of
service independent of the IP and NoC implementations. Exam-
ples of such guarantees are lower bounds on throughput, and upper
bounds on latency.

Our NoC, called Æthereal, offers ashared-memory abstrac-
tion to the IP modules. Communication is performed using a
transaction-based protocol, where master IP modules issuerequest
messages(e.g., read and write commands at an address, possibly
carrying data) that are executed by the addressed slave modules,
which may respond with aresponse message(i.e., status of the
command execution, and possibly data) [23]. We adopt this proto-
col to provide backward compatibility to existing on-chip commu-
nication protocols (e.g., AXI [1], OCP [18], DTL [19]), and also
to allow future protocols better suited to NoCs.

We provide a modular NI, which can be configured at design
time. This is, the number of ports and their type (i.e., configuration
port, master port, or slave port), the number of connections at each
port, memory allocated for the queues, the level of services per
port, and the interface to the IP modules are all configurable at
design (instantiation) time using an XML description [11].

The NI allows flexible NoC configuration at run time. Each
connection can be configured individually, requiring configurable
NoC components (i.e., router and NI). However, instead of using

1

a separate control interconnect to program them, the NoC is used
to program itself. This is performed through configuration ports
using DTL-MMIO (memory-mapped IO) transactions [19]. The
NoC can be configured in a distributed fashion (i.e., via multiple
configuration ports), or centralized (i.e., via a single port).

The paper is organized as follows. In the next section, the
services that we implement, and the interface offered to the IP
modules are described. In Section 3, we show that NoCs can be
configured both in a distributed and in a centralized way, and we
present the trade-offs between the two approaches. In Section 4,
we present a modular network interface architecture, which is split
into a kernel, providing core functionality, and a number of shells
to extend functionality, e.g., wrappers to provide an interface to
existing bus protocols, such as AXI or DTL. In this section, we
also show how the NI allows NoC configuration using the NoC
itself as opposed to via a separate control interconnect. In Sec-
tion 5, we demonstrate the feasibility of our network interface de-
sign through a prototype implementation in a0.13µm technology,
and we conclude in Section 6.

2 NoC Services
As mentioned in the previous section, the communication ser-

vices of the Æthereal NoC are defined to meet the following
goals: (a) decouple computation (IP modules) from communica-
tion (NoC), (b) provide backward compatibility to existing bus
protocols, (c) provide support for real-time communication, and
(d) have a low-cost implementation.

Decoupling computation from communication is a key ingredi-
ent in managing the complexity of designing chips with billions of
transistors, because it allows the IP modules and the interconnect
to be designed independently [16, 24]. In NoCs, this decoupling
is achieved by positioning the network services at the transport
level [3,21] or above in the ISO-OSI reference model [22]. At the
transport level, the offered services areend to endbetween com-
municating IP modules, hiding, thus, the network internals, such
as topology, routing scheme, etc.

Backward compatibility with existing protocols, such as AXI
or DTL, is achieved by using a model based ontransactions[23].
In a transaction-based model, there are two types of IP modules:
masters and slaves. Masters initiate transactions by issuing re-
quests, which can be further split in commands, and write data
(corresponding to the address and write signal groups in AXI).
Examples of commands are read, and write. One or more slaves
receive and execute each transaction. Optionally, a transaction can
also include a response issued by the slave to the master to return
data or an acknowledgment of the transaction execution (corre-
sponding to the read data and write response groups in AXI).

In the Æthereal NoC, all these signals are sequentialized in
request and responsemessages, which are supplied to the NoC,
where they are transported by means ofpackets. Sequentialization
is performed to reduce the number of wires, increasing their uti-
lization, and to simplify arbitration. Packetization is performed by
the NI, and is thus transparent to the IP modules.

The Æthereal NoC offers its services onconnections, which
can be point to point (one master, one slave), multicast (one mas-
ter, multiple slaves, all slaves executing each transaction), and
narrowcast (one master, multiple slaves, a transaction is executed
by only one slave) [23]. Connections are composed of unidirec-
tional point-to-pointchannels(between a single master and a sin-
gle slave). To each channel,propertiesare attached, such as guar-
anteed message delivery or not, in order or un-ordered message

delivery, and with or without timing guarantees. As a result, dif-
ferent properties can be attached to the request and response parts
of a connection, or for different slaves within the same connection.
Connections can be opened and closed at any time. Opening and
closing of connections takes time, and is intended to be performed
at a granularity larger than individual transactions.

Support for real-time communication is achieved by providing
throughput, latency and jitterguarantees. In Æthereal, this is im-
plemented by configuring connections as pipelined time-division-
multiplexed circuits over the network. Time multiplexing is only
possible when the network routers have a notion of synchronic-
ity which allows slots to be reserved consecutively in a sequence
of routers [13, 21]. This scheme [21] has smaller packet buffers,
and, hence, has lower implementation cost compared to alterna-
tives, such as rate-based packet switching [29], or deadline-based
packet switching [20].

Throughput guarantees are given by the number of slots re-
served for a connection. Slots correspond to a given bandwidth:
Bi, and, therefore, reservingN slots for a connection results in a
total bandwidth ofN×Bi. The latency bound is given by the wait-
ing time until the reserved slot arrives and the number of routers
data passes to reach its destination. Jitter is given by the maximum
distance between two slot reservations.

Protocol stacks that are used in networks to implement com-
munication services, require additional cost compared to buses.
Protocol stacks are necessary in networks to manage the complex-
ity of networks, and to offer differentiated services. The pressure
to keep the protocol stack small is higher on-chip than off-chip,
because the size of the IP modules attached to the NoC is rela-
tively small. However, for NoCs, the protocol stacks can be re-
duced by exploiting the on-chip characteristics (e.g., no transfer
errors, short wires) [23]. In the Æthereal NoC, we optimize the
performance and minimize the cost of the protocol stack by im-
plementing it in hardware, rather than in software. We support this
claim in Section 5.

3 Network Configuration
Before the Æthereal NoC can be used by an application, it must

be configured. NoC (re)configuration means opening and closing
connections in the system. Connections are set up depending on
the application or the mode the system is running. Therefore, we
must be able to open and close connections while the system is
running. (Re)configuration can be partial or total (some or all con-
nections are opened/closed, respectively).

Opening a connection involves setting several registers, and al-
locating shared resources (for more details see Section 4). In the
case of the current prototype of the Æthereal NoC, for each pair
of one master and one slave of a connection, there are 5 and 3
registers written at the master and slave network interfaces, re-
spectively. The shared resources consist of the slots allocated to
the connections. These slots can be configured using either a dis-
tributed or a centralized model.

In the distributed case, a connection can be opened/closed from
multiple network interface ports. Multiple configuration opera-
tions can be performed simultaneously, however, potential con-
flicts must also be solved (e.g., connection configurations initiated
at two configuration ports may try to reserve the same slot in a
router). Information about the slots is maintained in the routers,
which also accept or reject a tentative slot allocation.

In a centralized system, there is only one place that performs
NoC configuration. In such a case, the slot information can be

2

DTL

DTL

AXI

AXI

NI
kernel

na
rr

ow
ca

st

m
ul

tic
as

t

A
X

I a
da

pt
er

D
TL

 a
da

pt
er

Network interface (NI)NI
ports

Router

user network

NI kernel
ports

Figure 1. NI kernel and shells

stored in the configuration module instead of the routers, which
simplifies the design, and, in the case of small NoCs, may even
speed up configuration. For large NoCs, however, centralized con-
figuration can introduce a bottleneck.

In the initial prototype of the Æthereal NoC, we opt for central-
ized configuration, because it is able to satisfy the needs of a small
NoC (around 10 routers), and has a simpler design and lower cost.
We use transactions to program the NoC, both for connection reg-
isters in the NIs, and for the slot information. We present details
of how NoC configuration is performed in Section 4.

4 Network Interface Architecture
The network interface (NI) is the component that provides the

conversion of the packet-based communication of the NoC to the
higher-level protocol that IP modules use. We split the design of
the network interface in two parts (see Figure 1): (a) theNI kernel,
which implements the channels, packetizes messages and sched-
ules them to the routers, implements the end-to-end flow control,
and the clock domain crossing, and (b) theNI shells, which im-
plement the connections (e.g., narrowcast, multicast), transaction
ordering for connections, and other higher-level issues specific to
the protocol offered to the IP.

4.1 NI Kernel Architecture
The NI kernel (see Figure 2) receives and provides messages,

which contain the data provided by the IP modules via their pro-
tocol after sequentialization. The message structure may vary de-
pending on the protocol used by the IP module. However, the
message structure is irrelevant for the NI kernel, as it just sees
messages as pieces of data to be transported over the NoC.

The NI kernel communicates with the NI shells viaports. At
each port, point-to-point connections can be configured, their max-
imum number being selected at NI instantiation time. A port can
have multiple connections to allow differentiated traffic classes,
in which case there are alsoconnid signals to select on which
connection a message is supplied or consumed.

Int he NI kernel, there are two message queues for each point-
to-point connection (one source queue, for messages going to the
NoC, and one destination queue, for messages coming from the
NoC). Their size is also selected at the NI instantiation time. In our
NI, queues are implemented using custom-made hardware fifos,

connid
msg

Scheduler

Pck

Depck

Space

Limit

msg

msg

msg

chid

msg

msg

msg

chid

pck

data port

data port router port

pck

connid
msg

msg
msg

data port

msg
msg

pck
pck

Path

BE/GT

Clock domain
boundary

Source
queues

Destination
queues

memory-mapped
config. port

STUCredit

Figure 2. Network interface kernel

and are also used to provide the clock domain crossing between
the network and the IP modules. Each port can, therefore, have a
different clock frequency.

Each channel is configured individually. In a first prototype
of the Æthereal NI, we can configure if a channel provides time
guarantees (GT) or not (we call this best effort, BE), reserve slots
for GT connections, configure the end-to-end flow control, and the
routing information.

End-to-end flow control ensures that no data is sent unless
there is enough space in the destination buffer to accommodate
it. This is implemented using credits [26]. For each channel, there
is a counter (Space) tracking the empty buffer space of the re-
mote destination queue. This counter is initialized with the remote
buffer size. When data is sent from the source queue, the counter
is decremented. When data is consumed by the IP module at the
other side, credits are produced in a counter (Credit) to indicate
that more empty space is available. These credits are sent to the
producer of data to be added to itsSpace counter. In the Æthe-
real prototype, we piggyback credits in the header of the packets
for the data in the other direction to improve NoC efficiency. Note
that at mostSpace data items can be transmitted before credits
are received. We call the minimum between the data items in the
queue and the value in the counterSpace , thesendable data.

From the source queues, data is packetized (Pck) and sent to
the NoC via a single link. A packet header consists of the rout-
ing information (NI address for destination routing, and path for
source routing), remote queue id (i.e., the queue of the remote NI
in which the data will be stored), and piggybacked credits.

There are multiple channels which may require data transmis-
sion, we implement a scheduler to arbitrate between them. The
scheduler checks if the current slot is reserved for a GT chan-
nel. If the slot is reserved, is the GT channel has data which can
be transmitted, and if there is space in the channel’s destination
buffer, then the channel is granted data transmission. Otherwise,

3

Conn
cid_req

cid_req

Resp
connid

msg_req msg_req

msg_resp msg_resp

resp

Figure 3. Narrowcast shell

cid_req

cid_resp

Resp

msg_reqmsg_req

msg_respmsg_resp

resp

Sched
que_fill

Figure 4. Multi-connection shell

wr_data

cmd+flags

addr

rd_data

wr_resp

Seq

Deseq

msg

msg

Figure 5. Master shell

wr_data

cmd+flags

addr

rd_data

wr_resp

Deseq

Seq

msg

msg

Figure 6. Slave shell

the scheduler selects a BE channel with data and remote space
using some arbitration scheme: e.g. round-robin, weighted round-
robin, or based on the queue filling.

To optimize the NoC utilization, it is preferable to send longer
packets. To achieve this, we implemented a configurable threshold
mechanism, which skips a channel as long as the sendable data
is below the threshold. This is applicable for both BE and GT
channels. To prevent starvation at user/application level (e.g., due
to write data being buffered indefinitely on which the IP module
waits for an acknowledge), we also provide aflushsignal for each
channel (and a bit in the message header) to temporarily override
the threshold. When the flush signal is high for a cycle, a snapshot
of its source queue filling is taken, and as long as all the words in
the queue at the time of flushing have not been sent, the threshold
for that queue is bypassed.

A similar threshold is set for credit transmission. The reason
is that, when there is no data on which the credits can be pig-
gybacked, the credits are sent as empty packets, thus, consuming
extra bandwidth. To minimize the bandwidth consumed by cred-
its, a credit threshold is set, which allows credits to be transmitted
only when their sum is above the threshold. Similarly to the data
case, to prevent possible starvation, we provide a flush signal to
force credits to be sent even when they are below their threshold.

As credits are piggybacked on packets, a queue becomes eli-
gible for scheduling when either the amount of sendable data are
above a first threshold, or when the amount of credits is above
a second threshold. However, once a queue is selected, a packet
containing the largest possible amount of credits and data will be
produced. Note the amount of credits is bound by implementa-
tion to the given number of bits in the packet header, and packet
have a maximum length to avoid links being used exclusively by a
packet/channel, which would cause congestion.

On the outgoing path, packets are depacketized, credits are
added to the counterSpace , and data is stored in its correspond-
ing queue, which is given by a queue id field in the header.

cmd length flags

address

write data 1

write data N

. . .

trans id

error

read data 1

read data N

. . .

trans id

seq no.

seq no.

Request message format

Response message format

Figure 7. Message format examples

4.2 NI Shells Architectures
With the NI kernel described in the previous section, point-to-

point connections (i.e., between on master and one slave) can be
supported directly. These type of connections are useful in systems
involving chains of modules communicating point to point with
one another (e.g., video pixel processing [10]).

For more complex types of connections, such as narrowcast or
multicast, and to provide conversions to other protocols, we add
shells around the NI kernel. As an example, in Figure 1, we show
a NI with two DTL and two AXI ports. All ports provide point-to-
point connections. In addition to this, the two DTL ports provide
narrowcast connections, and one DTL and one AXI port provide
multicast connections. Note that these shells add specific function-
ality, and can be plugged in or left out at design time according to
the requirements. NoC instantiation is simple, as we use an XML
description to automatically generate the VHDL code for the NIs
as well as for the NoC topology.

In Figure 3, we show an example of a narrowcast shell. Nar-
rowcast connections are connections between one master and sev-
eral slaves, where each transaction is executed by a single slave
selected based on the address provided in the transaction [23].
Narrowcast connections provide a simple, low-cost solution for a
single shared address space mapped on multiple memories. It im-
plements the splitting/merging of data going to/coming from these
memories.

We implement the narrowcast connection as a collection of
point-to-point connections, one for each master-slave pair. Within
a narrowcast connection, the slave for which the transaction is des-
tined is selected based on the address (Conn block). The address
range assigned to a slave is configurable in the narrowcast mod-
ule. To provide in-order response delivery, the narrowcast must
also keep a history of connection identifiers of the transactions in-
cluding responses (e.g., reads, and acknowledged writes), and the
length of these responses. In-order delivery per slave of request
messages is already provided by the point-to-point connections.

When a slave using a connectionless protocol (e.g., DTL) is
connected to a NI port supporting multiple connections, a multi-
connection shell must be included to arbitrate between the connec-
tions. A multi-connection shell (see Figure 4) includes a scheduler
to select connections from which messages are consumed, based
e.g., on their filling. As for the narrowcast, the multi-connection
shell has a connection id history for scheduling the responses.

4

NI2->Cfg

Cfg->NI2

NI
kernel

C
on

fig
 S

he
ll

DTL
MMIO

Router
networkD

TL
D

TL
S

he
lls

S
he

lls

D
TL

D
TL

S
he

lls
S

he
llsA

(slave)

C
(master)

B
(master)

D
(slave)

B->A

A->B

DTL

DTL DTL

DTL

Cfg
(master)

NI1 NI2

NI
kernel

D
TL

D
TL

CNIP CNIP
(DTL MMIO) (DTL MMIO)

Figure 8. NI configuration

In Figures 5 and 6, we show a master and slave shells that im-
plement a simplified version of a protocol such as AXI. The basic
functionality of such a shell is to sequentialize commands and their
flags, addresses, and write data in request messages, and to dese-
quentialize messages into read data, and write responses. Exam-
ples of the message structures (i.e., after sequentialization) passing
from NI shells and NI kernel are shown in Figure 7. In full-fledged
master and slave shells, more blocks would be added to implement
e.g., the unbuffered writes at the master side, and read linked, write
conditional at the slave side.

4.3 NI Configuration
As mentioned in Section 3, in our prototype Æthereal NoC, we

opt for centralized configuration. This means that there is a single
configuration module that configures the whole NoC, and that slot
tables can be removed from the routers. Consequently, only the
NIs need to be configured when opening/closing connections.

NIs are configured via a configuration port (CNIP), which of-
fers a memory-mapped view on all control registers in the NIs.
This means that the registers in the NI are readable and writable
by any master using normal read and write transactions.

Configuration is performed using the NoC itself (i.e., there is
no separate control interconnect needed for NoC configuration).
Consequently, the CNIPs are connected to the NoC like any other
slave (see CNIP at NI2 in Figure 8). At the configuration module
Cfg’s NI, we introduce a configuration shell (Config Shell), which,
based on the address configures the local NI (NI1), or sends con-
figuration messages via the NoC to other NIs. The configuration
shell optimizes away the need for an extra data port at NI1 to be
connected to the NI1’s CNIP.

In Figure 9, we show the necessary steps in setting up a connec-
tion between two modules (master B and slave A) from a configu-
ration module (Cfg). Like for any other memory-mapped register,
before sending configuration messages for configuring the B to A
connection at NI2, a connection from Cfg to NI2’s CNIP must be
set up. This connection is opened in two steps corresponding to
the request and response channels. First, the request channel to
the NI2’s CNIP is set up by writing the necessary registers in NI1
(Step 1 in Figure 9). Second, we use this channel to set up (via
the NoC) the response channel from NI2’s CNIP to Cfg (Step 2).
The three shown messages are delivered and executed in order at
NI2. The last of them also requests an acknowledgment message
to confirm that the channel has been successfully set up.

After the configuration connection has been set up, the remote
NI2 can be configured to set up a channel from B to A. For config-

A Cfg
NI1
data

NI2
data

NI 2
cfg B

NI1
cfg

Setting up
configuration

connection

1. Setting up
 request channel
 NI1 -> NI2

Setting up
connection
from B to A

B can issue
requests to A. and

A can respond

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

2. Setting up
 response channel
 NI2 -> NI1

3. Setting up
 response channel
 A -> B

4. Setting up
 request channel
 B -> A

data

wr, data

rd

Figure 9. Connection configuration example

uring NI2 (B’s NI), the previously set up configuration connection
is used. For configuring NI1, the NI1’s configuration port is ac-
cessed directly viaConfig Shell . First, the channel from the
slave module A to the master module B is configured at NI1 (Step
3). Second, the channel from the master module B to the slave
module A is configured (Step 4) through messages to NI2.

5 Implementation
In the previous section, we describe a prototype of a config-

urable NI architecture. In this section, we discuss the synthe-
sized area and speed figures for the network interface components:
NI kernel, narrowcast, multichannel and configuration shells, and
master and slave shells for a simplified version of DTL.

We have synthesized an instance of a NI kernel with a STU of
8 slots, and 4 ports having 1, 1, 2, and 4 channels, respectively,
with all queues being 32-bit wide and 8-word deep. The queues
are area-efficient custom-made hardware fifos. We use these fi-
fos instead of RAMs, because we need simultaneous access at all
NI ports (possibly running at different speeds) as well as simulta-
neous read and write access for incoming and outgoing packets,
which cannot be offered with a single RAM. Finally, for the small
queues needed in the NI, multiple RAMs have a too large area
overhead. Moreover, the hardware fifos implement the clock do-
main boundary allowing each NI port to run at a different clock
frequency. The router side of the NI kernel runs at a frequency of
500 MHz, which matches our prototype router frequency [21], and
delivers a bandwidth toward the router of 16 Gbit/s in each direc-
tion. The synthesized area for this NI-kernel instance is0.11mm2

in a0.13µm technology.

5

Narrowcast and multi-connection shells have an area of
0.004 mm2 and0.007 mm2, corresponding to4% and6% of the
NI kernel area. The DTL shells are very small,0.005 mm2 and
0.002 mm2 for the master and slave ports, corresponding to5%
and2% of the NI kernel area, respectively. (This is also due to the
fact that not all of the DTL functionality has been implemented).
The configuration shell, which provides a simplified DTL-MMIO
interface to configure the NoC, has an area of0.01 mm2.

Summing up, for an example NI with 4 ports, one for config-
uration (one channel to which the configuration shell is attached),
two masters (one offering narrowcast), and one slave (multichan-
nel), the total area is0.11 + 0.01 + 2× 0.005 + 0.004 + 0.002 +
0.007 = 0.143 mm2.

The latency introduced by our current NI is2 cycles in the DTL
master shell (due to sequentialization, as part of packetization),0
to 2 in the narrowcast and multicast shells (depending on the NI
instance), and between1 and3 cycles in the NI kernels (as data
needs to be aligned to a3 word flit boundary), and2 clock cycles
for clock domain crossing. Additional delay is caused by the arbi-
tration, but we do not include this in the NI latency overhead, as it
needs to be performed anyway (also in the case of a bus, arbitration
is performed).

The resulting latency overhead introduced by our NI is between
4 and10 cycles, which is pipelined to maximize throughput. The
latency overhead of a software implementation of the protocol is
much larger (e.g.,47 instructions for packetization only [4]). A
hardware implementation allows both legacy software and hard-
ware task implementations to be used without change.

6 Conclusions
In this paper, we describe a network interface architecture

which offers high-level services at a low cost. Our network inter-
face provides a shared-memory abstraction, where communication
is performed using read/write transactions. We offer, via connec-
tions, high-level services, such as transaction ordering, throughput
and latency guarantees, and end-to-end flow control. These con-
nections are configurable at runtime via a memory-mapped con-
figuration port. We use the network to configure itself as opposed
to using a separate control interconnect for network configuration.

Our network interface has a modular design, composed of ker-
nel and shells. The NI kernel provides the basic functionality, in-
cluding arbitration between channels, transaction ordering, end-
to-end flow control, packetization, and a link protocol with the
router. Shells implement (a) additional functionality, such as mul-
ticast and narrowcast connections, and (b) adapters to existing pro-
tocols, such as AXI or DTL. All these shells can be plugged in or
left out at design time according to the needs. This is done using
an XML description of the network, which is used to automati-
cally generate the VHDL code for the network interfaces, as well
as for the network topology.

We show an instance of our network interface, which shows
that the cost of implementing our protocol stack in hardware is
small (0.143mm2 in a0.13µm technology, running at500 MHz).
Our hardware protocol stack implementation provides a very low
protocol overhead of4 to 6 cycles, which is much lower than a
software stack implementation.

In conclusion, we provide an efficient network interface offer-
ing a shared-memory abstraction, high-level services (including
guarantees), which allows runtime network configuration using the
network itself.

References
[1] ARM. AMBA AXI Protocol Specification, June 2003.
[2] L. Benini and G. De Micheli. Powering networks on chips. InProc.

ISSS, 2001.
[3] L. Benini and G. De Micheli. Networks on chips: A new SoC

paradigm.IEEE Computer, 35(1):70–80, 2002.
[4] P. Bhojwani and R. Mahapatra. Interfacing cores with on-chip

packet-switched networks. InProc. VLSI Design, 2003.
[5] E. Bolotin et al. QNoC: QoS architecture and design process for

network on chip.Journal of Systems Architecture, 49, Dec. 2003.
[6] T. Callahan and S. C. Goldstein. NIFDY: A low overhead, high

throughput network interface. InProc. ISCA, 1995.
[7] A. Chien et al. Design challenges for high-performance network

interfaces.IEEE Computer, 31(11):42–44, 1998.
[8] D. J. Culler et al. Parallel Computer Architecture: A Hard-

ware/Software Approach. Morgan Kaufmann Publishers, 1999.
[9] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-

connection networks. InProc. DAC, 2001.
[10] O. P. Gangwal et al. Understanding video pixel processing applica-

tions for flexible implementations. InProc. Euromicro DSD, 2003.
[11] S. Gonzalez Pestana et al. Cost-performance trade-offs in networks

on chip: A simulation based approach. InProc. DATE, 2004.
[12] K. Goossens et al. Networks on silicon: Combining best-effort and

guaranteed services. InProc. DATE, 2002.
[13] K. Goossens et al. Guaranteeing the quality of services in networks

on chip. In J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, editors,
Networks on Chip, pages 61–82. Kluwer, 2003.

[14] P. Guerrier and A. Greiner. A generic architecture for on-chip
packet-switched interconnections. InProc. DATE, 2000.

[15] F. Karim et al. An interconnect architecture for networking systems
on chip. IEEE Micro, 22(5), 2002.

[16] K. Keutzer et al. System-level design: Orthogonalization of con-
cerns and platform-based design.IEEE Trans. on CAD of Integrated
Circuits and Systems, 19(12):1523–1543, 2000.

[17] S. Kumar et al. A network on chip architecture and design method-
ology. InProc. ISVLSI, 2002.

[18] OCP International Partnership.Open Core Protocol Specification.
2.0 Release Candidate, 2003.

[19] Philips Semiconductors.Device Transaction Level (DTL) Protocol
Specification. Version 2.2, July 2002.

[20] J. Rexford.Tailoring Router Architectures to Performance Require-
ments in Cut-Through Networks. PhD thesis, Univ. Michigan, 1999.

[21] E. Rijpkema et al. Trade offs in the design of a router with both
guaranteed and best-effort services for networks on chip. InProc.
DATE, 2003.

[22] M. T. Rose.The Open Book: A Practical Perspective on OSI. Pren-
tice Hall, 1990.

[23] A. Rădulescu and K. Goossens. Communication services for net-
works on chip. In S. Bhattacharyya, E. Deprettere, and J. Teich,
editors,Domain-Specific Embedded Multiprocessors. Dekker, 2003.

[24] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes
through communication-based design. InProc. DAC, 2001.

[25] P. Steenkiste. A high-speed network interface for distributed-
memory systems: Architecture and applications.ACM Trans. on
Computer Systems, 15(1):75–109, 1997.

[26] A. S. Tanenbaum.Computer Networks. Prentice Hall, 1996.
[27] D. Wiklund and D. Liu. Socbus: switched network on chip for hard

real time embedded systems. InProc. IPDPS, 2003.
[28] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin. A study on

communication issues for systems-on-chip. InProc. SBCCI, 2002.
[29] H. Zhang. Service disciplines for guaranteed performance service in

packet-switching networks.Proc. of the IEEE, 83(10):1374–1396,
1995.

6

