
Chapter 4

GUARANTEEING THE QUALITY OF
SERVICES IN NETWORKS ON CHIP

Kees Goossens, John Dielissen, Jef van Meerbergen,
Peter Poplavko†, Andrei Rădulescu, Edwin Rijpkema,
Erwin Waterlander, and Paul Wielage
Philips Research Laboratories, Eindhoven, The Netherlands
† Technical University of Eindhoven, Eindhoven, The Netherlands
Kees.Goossens@philips.com

Abstract Users expect apredictable quality of service(QOS) of embedded systems, even
for future, more dynamic, applications. System-on-chip designers use networks
on chip (NOC) to solve deep submicron problems, and to divide global prob-
lems into local, decoupled problems.NOCs provide services through protocol
stacks, and introducingguaranteedservices enablesIP re-use and platform-
based design. It also provides globally predictable behaviour, as required by
the user, when combining local, decoupled solutions. There are several levels of
QOS commitment (correctness, completion, completion bounds), with increas-
ing cost. A combination of guaranteed and best-effort (no commitment) services
combines their respective attractive features: predictable behaviour, and good
average resource utilisation. The ÆTHEREAL NOC is an example of this ap-
proach, and forms the basis of aQOS-based design style, as advocated in this
chapter.

1. Future applications and systems on chip
In this section we raise the following question:why and how must systems

implementing future applications guarantee the quality of service(QOS)? We
look at each of the components in turn, in the context of embedded systems
and systems on a chip (SOC). We then observe that newSOCarchitectures and
design methods divide global problems into local ones, and rely on networks
on chip (NOC) to compose local solutions. We answer the question, in Sec-
tion 2, by presenting a synthesis of aQOS-based design style and networks on
chip. Section 3 explains thatQOS can be decomposed into several levels of

61

62 NETWORKS ON CHIP

commitment, with different resource requirements. In Section 4 we introduce
the ÆTHEREAL NOC, and compare it to otherNOCs, in Section 5.

1.1 Characteristics of future applications
We are witnessing theconvergenceof previously unrelated application do-

mains: computation (personal digital assistants, mobile computing), communi-
cation (telephone, videophone, networking), and multimedia (audio, photogra-
phy, video, augmented and virtual reality). Convergence leads to increased
functionality and heterogeneity, as previously unrelated functions are com-
bined. Systems become more dynamic, or even unpredictable, as new algo-
rithms seek to take advantage of the disparity between average and worst-case
processing. Compressed audio and video data ofMPEG2 is an example. Algo-
rithms are also shifting to higher semantic levels, and the semantic complexity
of data is less predictable than its volume. An example is the shift from con-
stant pixel processing (scaling, edge enhancement, and so on), toMPEG4 object
detection and synthesis, to face recognition and scenario detection. Finally, in-
creased interaction with the environment also makes systems more dynamic.
System functionality can be influenced by the current location (affecting com-
munication or computation capabilities), environmental conditions (precipita-
tion and multipath interference can affect mobile communication), and other
systems in the proximity (e.g. car guidance, ad hoc networking).

Trends such as ambient intelligence and the networked home make future
applicationsembeddedand pervasive. Moreover, applications acquire a re-
sponsibility for the control of physical objects, such as home heating systems,
cars, and so on. Real-time performance and safety are critical in many of these
applications.

Below, we examine how users interact with these applications, and then
what is required to design these systems.

1.2 Quality of service: a user view
Usersexpect a certain behaviour of applications; in other words, they must

bepredictable. While those expectations may be low, as is often the case for
personal computers, a certain fitness for purpose is always assumed. Consumer
electronics are subject to higher demands: a television must have a robust user
interface and is not allowed to crash or be unresponsive. Expectations are
stricter yet for real-time applications (e.g. involving audio and video, or control
systems); a television must display at least 50 pictures of a constant quality per
second, for example. The essence of quality of service (QOS) is therefore the
offering of a predictable system behaviour to the user.

A central question is how to reconcile the dynamic, unpredictable nature of
future applications with the requirements for predictable services.

Guaranteeing The Quality of Services in Networks on Chip 63

1.3 Implementing future applications on chip
Having identified the characteristics of future applications and theirQOS

requirements, we now turn to the question of their implementation inSOCs.
Moore’s law describes theexponential growthover time of the number of tran-
sistors that can be integrated in anIC. It predicts that chips in 2010 will count
over 4 billion transistors, operating in the multi-GHz range [1]. It is this abun-
dance of computational power that has fuelled the convergence of application
domains described above. However, Moore’s law is only a prediction, and two
major obstacles must be solved to make it a reality [2]. First, to use futureVLSI

technologies, severaldeep-submicron problemsmust be solved: the increasing
disparity between transistor and wire speeds, power delivery and dissipation,
and signal integrity. Second, the intrinsic computational power of anIC must
not only be used efficiently and effectively, but the time and effort to design
a system containing both hardware and software must also remain acceptable.
The so-calleddesign productivity gapstates that the increase in our ability to
designSOCs does not match Moore’s law. To close the gap, system design
methods to implement applications with the latestVLSI technology (including
the definition of architectures, mapping applications to architectures, and pro-
gramming) must harness exponential hardware resource growth in a scalable
and modular manner.

The following two examples show that until recently, architectures and de-
sign methods at both the deep-submicron and system levels have been often
beenglobal in nature. This hampers scalability, and in the next section we
show that approaches that compose local solutions are becoming popular.

The physical communication between intellectual property blocks (IP) has
made use of a mix of local and global wires. When timing constraints of the
design must be verified,IPs cannot be checked independently because they
are interconnected; correcting a timing violation in oneIP may invalidate the
timing of another. This process does not necessarily converge to a solution, and
is design specific (not re-usable). This global timing closure problem results
from a tight (timing) coupling [3].

The second example considers the model of time. Until now, the dominant
design style has been synchronous; a global notion of time has been imple-
mented by globally synchronous clocking. Increasing processing variations on
a singleIC make this style untenable in the future [4]. This will impact clock-
ing regimes, but also the programming model. When using shared memory,
which has been the dominant method to communicate between tasks, if tasks
are not tightly synchronised (requiring a common, global time frame) then task
scheduling may lead to interference and unpredictable behaviour.

64 NETWORKS ON CHIP

1.4 Composing local subsolutions
To avoid the exponential complexity of global methods and solutions, there

is increasing interest in subdividing global problems intolocal, decoupled
problems, and then composing the local solutions. This requires, foremost,
compositionalityto assemble a global solution from local ones (Figure 4.1).
But solutions must also bescalable(and likely hierarchical, Figure 4.1(c)) be-
cause there will be an exponential number of local solutions. This applies at all

(b) (c)(a)

Figure 4.1. Divide global problem (a) into local problems that are composed flat (b) or hier-
archically (c). Examples areGALS, local timing closure, local shared memory with global fifo
communication or message passing, local busses or switches with global packet switching.

levels ofSOCdesign: lay-out, timing verification, clocking, and programming.
This trend commenced some time ago withIP-based re-use, platform-based
design [5]. The interest in decoupling and composing local solutions can be
observed in hierarchical lay-out and wiring, local clocking strategies such as
GALS (globally asynchronous, locally synchronous) [6], software-programmable
fixed IPs or tiles [7, 8], and synthesisable tiles for dedicated silicon [9] or
FPGAs [10, 11]. At the task level, these scalable system architectures (in-
cluding e.g. chip multiprocessing [12, 13, 14]) use tasks with local, indepen-
dent address spaces and time frames that are composed by means of timing-
independent fifo channels (for example, Kahn process networks for stream-
based processing).

1.5 Networks on chip
All the approaches that advocate local solutions have a common reliance on

a scalable and compositional communication medium to efficiently combine
the large number of (hardware and software)IPs or subsystems in a work-
ing system. This challenge is addressed by networks on chip (NOC), which
therefore play a pivotal role in futureSOCs. NOCs help to solve both deep-
submicron problems (timing closure, wiring, lay-out, etc.) and compositional
design methods (services and protocol stacks). More detailed argumentation
for the use ofNOCs in futureSOCs can be found in [15, 9, 16, 17, 2], and
elsewhere in this volume.

In the following section we show thatNOCs andQOS naturally combine to
solve the two problems stated in this section:NOCs combine decoupled local
solutions, and a service-based design style makes both the design process and
theQOS of the resultingSOCmore predictable.

Guaranteeing The Quality of Services in Networks on Chip 65

2. NoCs and QoS: a synthesis
We advocate system design centred onNOCs andQOS for three reasons.

First, services relieve the inherent tension between thedynamic nature of future
applicationsand the user requirement for predictable services. This addresses
concerns raised in Sections 1.1 and 1.2. Second,IP re-use and platform-based
design aim to re-use applications and architectures by decoupling them. The
use ofNOCs and their associated network protocol stacks are a way to achieve
this (cf. Section 1.5). Finally, it is our tenet thatQOS, in particularguaranteed
services, allow us to move towardsglobally predictable, locally predictable
methods and solutions forSOCdesign. This, in combination withNOCs solves
a need of recent architectures and design methods, introduced in Section 1.4.
We discuss each point in turn.

2.1 Dynamic applications and predictable QoS
A QOS-based design style alleviates the demanding task for the systemde-

signer. He or she must plan systems that reliably provide users with the ex-
pectedQOS for future applications. Moreover, systems must always be cost
effective. Higher costs are acceptable when safety is critical, but they are al-
ways under pressure for consumer products, whether they be television sets
or cars. Systems, especiallySOCs, therefore have limited resources, and they
must be shared and managed as the application unfolds its dynamic behaviour.
Resource management depends on two phases: negotiation to obtain resources,
followed by a steady state in which allocated resources are used. As applica-
tions become more dynamic, the first phase,renegotiation, will become more
frequent. Thus, users can be given a predictableQOS by giving resource man-
agement andQOS a prominent place in system design.

2.2 Platform-based design, NoCs, and QoS
The aim ofplatform-based design [5, 18] is to reduce the cost of system

design through re-use of applications and architectures. A platform decouples
applications and system architectures, by defining a template architecture and
programming model. In other words, by limiting the freedom in which an ap-
plication can be implemented on an architecture, the interdependence of appli-
cation and architecture is concentrated and reduced (Figure 4.2(a)). However,
the convergence of applications entails an increasing diversity and dynamics
in resource usage (such as communication and computation patterns), and this
results in an increasing need fordifferentiated services[15]. It is therefore im-
portant that the platform offers the appropriate services (for communication,
computation, power management, etc.). As a result, the communication in-
frastructure is a critical component of a platform, because it must solve the

66 NETWORKS ON CHIP

(b)

network
dependent

network
independent

NoC / network services

application diversity

Si technology / network architeture

transport

session

presentation

application

network

data link

physical

(c)(a)

architecture
dependent

architecture
independent

platform

application diversity

architecture diversity

Figure 4.2. Decouple applications and architectures by means of a platform (a), or network
(e.g.NOC, Internet) services (b), or network protocol stacks (c).

apparent contradiction of implementing diverse application behaviours with
application-dependentIPs in an application-independent manner. Using aNOC

for the platform interconnect tackles both problems: it integrates heteroge-
neousIPs in a standard fashion (in other words, theNOC services largely define
the platform, Figure 4.2(a)); and it naturally provides differentiated services by
means of a (partially application-dependent) protocol stack [17].

Figure 4.2(b) shows thatNOCs offer a small set of services (“NoC services”),
on top of which different kinds of communication can be implemented (e.g.
shared-memory cache-coherent traffic, message passing). TheOSI transport
layer [19] is a natural place to separate the application and architecture, be-
cause it is the first network-independent layer. The set of services should be
small, yet allow the upper layers in the protocol stack to offer differentiated ser-
vices [20]. This method has been used successfully in computer networks [21],
where the internet protocol (IP) plays a similar role. Higher layers offer more
specialised protocols such asTCP and UDP, and FTP and HTTP. For NOCs,
there are several proposals [22, 23, 24], but convergence has yet to occur.

Concluding,NOCs helpIP re-use and platform-based design to combineIPs,
andNOC services aid in decoupling applications and architectures.

2.3 QoS enables predictable composition
As we have seen in Section 1.3, to fully exploit Moore’s law, it is key to

combine and control many local, perhaps autonomous, components in an ef-
ficient and flexible manner resulting in the requiredQOS. To localise timing,
communication, data, scheduling, and so on, means that components (subsys-
tems, IPs, tasks, threads, etc.) must first be identified. After composition,
their interaction is controlled by means of arbitration, scheduling, or resource
management. But we must address the apparent contradiction of providing
globally predictableQOS (cf. Section 2.1) while current approaches tend to
globally unpredictable, locally predictable(GULP!) regimes. How can global

Guaranteeing The Quality of Services in Networks on Chip 67

timing guarantees be given when locally synchronous components are com-
bined asynchronously [6]? How can global performance be quantified when
tasks are combined in a latency-insensitive fashion [14, 7]? It is our tenet that
QOS, in particular guaranteed services, allow us to move towardsglobally pre-
dictable, locally predictablemethods and solutions. We elaborate this claim
below, by first defining what roleQOS plays, then stating how the local solu-
tions (e.g. IP design) benefit, and finally howQOS eases the composition of
local solutions.

2.3.1 Services. Effective steering of the limited resources in a
NOC (cf. Section 2.1), and hence effectiveQOS, is contingent on a reliable re-
action of resources to instructions. In other words, a predictable or guaranteed
behaviour of system components is a prerequisite to providing the user with
expectedQOS, at whatever level. The essence ofQOS-based system design is
to restrict the interaction between components to well-defined services. Two
phases can be distinguished: (a) negotiation, followed by (b) resource steer-
ing or scheduling, and observation or inspection. As an example, consider a
microprocessor which negotiates a connection to a memory with guaranteed
bandwidth, but without a constraint on transaction ordering. TheNOC that of-
fers communication services will honour the request if has sufficient resources
available, and will reject it otherwise. Later, the microprocessor may rene-
gotiate its connection, e.g. to a higher bandwidth. TheNOC will release the
resources of the connection for use by other connections, when it is closed by
the microprocessor.

2.3.2 Advantages for local solutions. QOS-based interaction
has a number of advantages forIP design. By limiting component interac-
tion to a set of well-defined services, their interfaces are simplified because
there are fewer eventualities to take into account. Moreover, failures of ser-
vice users (IPs) are concentrated at the reconfiguration points: after a service
provider (such as aNOC) has committed to the request (such as a connection
with bounded jitter), its provision can be relied upon. Similarly,IPs do not
interfere with each other because the service provider and user have a local
contract. This allows components to be designed and implemented in isola-
tion. An advantageous side effect of negotiation is that the requirements ofIPs
must be stated explicitly, aiding the design process.

2.3.3 Advantages in composing local solutions. We now
consider the impact ofQOS-based interaction when combiningIPs to obtain a
SOC. First, services that are guaranteed to anIP are not affected by otherIPs
in the network, making reasoning about theIP in isolation possible. This is
essential for acompositional construction(design and programming) ofSOCs.

68 NETWORKS ON CHIP

Moreover,SOCs can be morerobust, because rather than relying on cooper-
ation to share resources, resource management enforces the contracts between
service providers and users. AnIP that (maliciously or erroneously) does not
adhere to a cooperative protocol, such asTCP/IP, cannot, therefore, disturb the
system as a whole [25]. Failure is therefore local in space (oneIP) and time (at
one of its reconfiguration points).

Next, when components are combined, the performance (i.e. theQOS) of
their composition must be validated. This can be done by analysing the com-
plete system implementation. However, this analysis may be too hard, because
the behaviour of individual components or their interactions are complex to
model accurately (e.g. traffic analysis ofNOCs [26], cache behaviour [27]).
Statisticalapproaches are therefore frequently used [28]. Unfortunately re-
source requests often do not fit models (e.g. bursty traffic versus fractal or
normal traffic distributions [26]) invalidating the verification. The oxymoron
“statistical guarantee” does therefore not guarantee aQOS, but implies a (usu-
ally post hoc) analysis relying on a statistical model of the resources and their
usage. Instead, we propose to validate the composition of the local solutions
at the level of services (their interface), instead of having to open them up, and
consider their (global) combination. Thisabstractionis essential in reducing
the verification state space.

Finally, services can makeQOS provisionarchitecture independent, because
how a component, such as aNOC, offers its services is not relevant. This re-
moves the need to second-guess the inner workings of a component, because
its services describe all that is required to know. Interaction becomes prescrip-
tive (state what is required, i.e. what must happen), rather than prognostic (try
to predict the service provider’s behaviour) or reactive (act on how the service
provider behaves).

We can therefore conclude that by abstracting localIP behaviours to their
service requirements or provision, makes the globalQOS of their composition
more predictable and hence easier to reason about. This simplifies the design
of SOCs.

3. On the cost of guaranteeing QoS
We have seen that aQOS-based approach is required to implement future

applications, and to offer a predictable performance to users. In essence, offer-
ing a QOS requires a commitment. In this section, we present different levels
of commitment, and their effect on predictability and cost in terms of resource
usage. Although guaranteed services, which offer commitment, have many ad-
vantages over so-called best-effort services, which offer no commitment, we
show that their combination is beneficial. The ÆTHEREAL NOC, described in
the next section, is an example of that approach.

Guaranteeing The Quality of Services in Networks on Chip 69

3.1 Different levels of commitment
As has been explained before, to offer a certainQOS with finite resources,

the service provider and user negotiate to arrive at a contract, i.e. acommitment
by the service provider to honour the request. If a commitment has been given,
the service isguaranteed, otherwise it is abest-effortservice. Commitment ex-
ists at several levels: 1)correctnessand integrity of the result, if and when it is
delivered. Examples are parity checking and error correcting codes for uncor-
rupted data transmission, and redundant computation with majority voting for
safety-critical systems. 2) Promise ofcompletionor delivery. This involves the
cumulative availability (over time) of sufficient resources (e.g. memory, cpu
cycles), and their performance (e.g. absence of deadlock or livelock). Note that
a minimum number of resources may be required: for example, an in-placeFFT

needs to store all samples simultaneously, and a mobile communication may
require a minimum battery charge to generate a sufficiently strong signal. 3)
Boundson the performance. Examples are the completion time (when is the re-
sult available), cumulative time to completion and its variations (e.g. bounded
latency and jitter), and (peak and average) energy consumption.

Almost any form of commitment to progress leads to resource allocation
(e.g. memory space, cpu cycles, communication bandwidth, battery power)
and hence requires resource management. Moreover, levels of commitment
depend on those below them. We illustrate this with two examples.

An IP connected to aNOC may not always be able to accept incoming data.
Assuming its input buffers are finite, several solutions are possible, with direct
consequences for the service level that can offered. Packets that arrive at a full
buffer are dropped, instantly precluding completion bounds such as latency
and jitter guarantees. General computer networks typically use this approach.
Alternatively, packets are not dropped and are left waiting in the network. Care
then has to be taken to not introduce deadlock (e.g. if re-ordered packets that
wait for free buffers do not overtake each other), or livelock (e.g. in deflection
routing [29] packets keep moving, but may never arrive at their destination).
In both cases, again, completion bounds may be in jeopardy. An approach
to offer completion bounds (e.g. for a bounded communication latency) is to
ensure packets never wait in the network by reserving buffer resources at the
receiver, and by using end-to-end flow control to constrain the sender to never
send more than the available space.

The second example concerns data transmission in unreliable media. This
is a topic of importance inNOCs because wires suffer increasingly from in-
terference, such as cross-talk and voltage drops. To ensure data is transported
unchanged, it can be retransmitted when corrupted, or error correction can be
used. The energy efficiency of both approaches is investigated by [30] for un-
reliable busses. What concerns us here, is that using retransmission takes a

70 NETWORKS ON CHIP

variable, possibly unbounded, amount of time, whereas error correction takes
place in a constant time. Therefore, time-related guarantees, such as minimum
throughput, can only be given by the latter.

We conclude that the strictest guarantees, namely those involving perfor-
mance bounds, pervade the system (all protocol layers): they cannot be grafted
on as an afterthought [17, 31]. InNOCs we should and can choose communi-
cation protocols and styles to offer the required services, but, as the examples
show, this requires vigilance.

3.2 Commitment and resource usage
The effect of the level of commitment on resource usage is illustrated in

Figure 4.3. Suppose that the resource plotted vertically is bandwidth. For

t

resources

time

1 2 3
4

(a)
RT

r

rRT

AVG

(b)

resources

time

1 2 3
4

tAVG

r

rRT

AVG

resources

time

(c)

r

rRT

AVG

tRT

Figure 4.3. (a,b) Commitment to completion or bounded completion is reflected in resource
usage. (c) Combining guaranteed services with best-effort services, discussed in Section 3.3.

real-time performance, the requested bandwidth must be offered in the same
interval, see Figure 4.3(a). Thus, as many resources must be available as the
largest request (rRT at time tRT). With resources dimensioned for the aver-
age resource usage (rAVG in Figure 4.3(b)), completion times may shift to the
future: the peak resource request at timetRT is only completed at timetAVG ,
in the example. Depending on the required completion bound and variability
in resource requests more or fewer resources can be added. However, more
resources thanrRT do not improve performance, while fewer resources than
rAVG mean that no completion commitment can be given, because the backlog
of requests keeps growing.

Architectures offering only best-effort services do not reserve resources,
and hence can have abetter average resource utilisation, at the cost ofun-
predictable or unbounded worst-case behaviour.

3.3 Both best-effort and guaranteed services
A service is guaranteed if a commitment is given, and best effort otherwise.

This holds for individual services, not their ensemble. For example, data trans-
port may be uncorrupted (commitment to correctness), and lossless (commit-

Guaranteeing The Quality of Services in Networks on Chip 71

ment to delivery), and without throughput guarantees (best-effort throughput,
i.e. no commitment to a completion bound). Moreover, a given service can
be offered both with and without commitment, to flexibly use the available re-
sources. For example, a data transport service can be offered both with and
without completion bounds, to serve different users, in a singleSOC. In Fig-
ure 4.3(c), the critical dark traffic, uses the guaranteed service, for real-time
performance. The remainingrRT − rAVG resources are, on average, available
to other traffic, for example with less strict completion bounds, or with no
completion bound (best-effort completion).

Figure 4.3(c) shows that when resources must be dimensioned for the worst-
case for a given service commitment (e.g. guaranteed latency), the resources
can also be used to give less stringent commitments (e.g. guaranteed delivery),
or even a best-effort service. A combination of best-effort and guaranteed
services gives the advantages of guaranteed services to only part of the system,
but the available resources are used more efficiently. In the next section we
show how this can be put in practice, in the ÆTHEREAL NOC.

4. The Æthereal network on chip
In this section we introduce the ÆTHEREAL NOC [17, 2]. It offers guar-

anteed services to obtain the advantages in composability, robustness, and so
on of QOS-based design. These services are used for real-time and critical
functions. The ÆTHEREAL NOC also provides best-effort services, to take
advantage of their lower resource requirements and potentially better average
performance. We describe theNOC services [24] in the next section.

In Section 4.2, we show how the services can be efficiently implemented,
using a mix of time-division-multiplexed circuit switching, and packet switch-
ing [32, 31]. The programming model (connection creation and closing) and
its advantages are also explained.

4.1 Æthereal Services
The ÆTHEREAL NOC offers differentiated services withconnections. A

connection describes communication between one master and one or more
slaves, with an associated service level, such as fifo transaction ordering, and
maximum latency. Connections must becreatedstating the requested service
level; this is the negotiation phase. TheNOC either accepts or rejects the re-
quest for the connection. Connection acceptance may lead to resource reser-
vations in theNOC, e.g. buffers or a link bandwidth percentage. After usage,
closinga connection frees the resources. Different connections are created and
closed independently, possibly at different points in time. Configurations can
be computed at compile time (i.e. off-line), or at run time. To ensure that

72 NETWORKS ON CHIP

the programming model scales asNOCs become larger, negotiations can be
distributed.

4.1.1 Transactions. Once a connection has been created, the
master initiatestransactionsby means ofrequestswhich zero or more slaves
execute, perhaps leading to aresponse. Examples of transactions are read,
write, acknowledged write, test and set, and flush. By offering these transac-
tions the ÆTHEREAL transaction model is similar to existing bus protocols, to
ease migration ofIP from current interconnects toNOCs. However, to be able
to take full advantage of increasedNOC performance, transactions can also be
pipelined, split, and posted [24].

4.1.2 Connection Types. The ÆTHEREAL NOC can offer three
kinds of connections (Figure 4.4). Asimpleconnection contains a master and

narrowcast:

multicast:

simple:

master
slave

slave
slave

master
slave

slave
slave

master slave

Figure 4.4. Connection types.
IN

µP

IN

M2

IN

M1rd, wr

rd, wr

00-7F

80-FF

00-FF

Figure 4.5. A narrowcast connection.

a single slave. The master initiates transaction which the slave executes, pos-
sibly resulting in a response (e.g. for a read). On anarrowcastconnection,
containing a master and one or more slaves, the request from the master is sent
to and executed by exactly one slave. An example of the narrowcast connection
is shown in Figure 4.5, where the master performs transactions on an address
space that is mapped on two memory modules. Depending on the transaction
address, a transaction is executed on one of the two memories. Amulticast
connection is a connection between one master and one or more slaves, in
which requests are duplicated and each slave receives a copy of those requests.
Currently, in a multicast connection no return messages are allowed, because
of the volume of traffic they may generate (i.e., one response per destination),
and the increased complexity in the master (because individual responses from
slaves must be merged into a single response).

4.1.3 Connection Properties. We distinguish the follow-
ing services, or connection properties: 1) data integrity, 2) transaction order-
ing, 3) transaction completion, 4) connection flow control, and 5) connection

Guaranteeing The Quality of Services in Networks on Chip 73

throughput, latency, and jitter. A connection can request any combination of
these properties (e.g. a throughput guarantee, flow control, but no transaction
ordering). Recalling the levels of commitment, of Section 3.1, properties 1
and 2, above, commit to correctness (including order) of results. Completion
is guaranteed by property 3 and 4 (4 implies 3). Connection latency and jitter
give completion bounds. We discuss each property in turn.

1) Data integrity means that data is transported unchanged. We assume
that data integrity is solved at the data link layer; every connection therefore
offers data integrity. However, as noted in Section 3.1, this must be done in a
way that supports higher-level commitments, in particular bounds on transport
completion (latency).

2) Transaction ordering.Transaction orders are only defined on a single
connection; transactions on different connections may be transported and exe-
cuted in any order. In general, responses and requests may be reordered during
their transport in the network. This means that requests (responses) may arrive
in a different order at a single slave (master) than they were sent. (Note that
we refer to requests and responses of different transactions. Within a single
transaction, requests and responses are always ordered as follows: the master
sends a request, a slave receives the request and executes it, the slave sends
the response, the master receives the response.) We refer to [24] for a detailed
analysis of different orderings. Here it suffices to state that three connections
orderings are useful.Unorderedconnections, in which no order is assumed be-
tween any request and response.Locally ordered connections, where requests
sent by the master for each slave are delivered to that slave in order they were
sent. Requests for different slaves are unordered. Responses are delivered to
the master in the order the requests were generated. For example, on a narrow-
cast connection with multiple single-port memory slaves, the read and write
order to a single memory is important, but not between memories.Globally
ordered connections, in which requests for (responses from) all slaves are de-
livered to the slaves (master) in the order the requests were sent. This last
ordering is not offered as a service, because local ordering is usually sufficient,
and because the user can emulate global ordering by means of acknowledged
transactions. Global ordering may be used when the order in which different
devices (slaves) are programmed is of importance.

3) Transaction completionstipulates that transactions requesting a response
(e.g. acknowledged write) guarantee that the master always receives a re-
sponse. The response contains a) a report that the request was not delivered
to the slave, or b) the response of the slave, after it successfully executed the
request, c) a notification that the slave successfully executed the request, but the
response was dropped, d) a report that the slave failed to execute the request.
For connections with flow control, no data will be dropped, and transaction
completion is automatic. Without flow control fewer resources are required in

74 NETWORKS ON CHIP

the network, but data may be dropped. For example, it may be fine to drop a
transaction, as long as you know it has been lost, so that you can resend it.

4) Connection flow controlguarantees that data that is sent will fit in the
buffers at the receiving end. End-to-end flow control is one of main techniques
to avoid network congestion, if data cannot be dropped (cf. Section 3.1). If
a slave is slower than its master, and the slave buffers fill up, then the master
will be blocked until there is sufficient free space for a transaction. Similarly,
a slave may be blocked by a slower master on the return path.

5) Bounds on connection throughput, latency, and jitter.The ÆTHEREAL

NOC provides connections that guarantee a bandwidth per fixed time interval.
Thus, a combined throughput, latency, and jitter guarantee is given. Depending
the time interval, the latency and jitter bounds may be rather large. This is
acceptable in many applications, such as audio and video streaming, where
throughput is more important than latency. In the next section give the reasons
for giving the throughput guarantee in this form.

The ÆTHEREAL services include transactions of bus protocols, to ease mi-
gration from current bus-based systems toNOCs. But where inOCP [23] and
VCI [22] connections are used only to relax transaction ordering, we offer a
more general connection property model. Not only are more properties con-
sidered, but the request and response communications can be independently
configured (e.g. for flow control, and throughput guarantees), allowing more
fine-grained resource management. Connection-based service provision there-
fore allows better differentiation of services, and allows users to make full use
of NOC performance.

4.2 Æthereal architecture
The challenge of designing aNOC lies in finding a balance between theNOC

services and their implementation complexity and cost. Moreover, as has been
mentioned in Section 3.1, different services (levels of commitment) are de-
pendent on each other. Offering time-related guarantees (a completion bound)
influences theNOC to the core. The ÆTHEREAL NOChas both guaranteed and
best-effort services, and an architectural challenge is how to combine these ef-
ficiently. In other words, how canguaranteed worst-case behaviour be joined
with good average resource usage. In the following sections we describe two
conceptually disjoint networks that each solve one part. An efficient combi-
nation is then presented. Both networks contain two components: routers and
network interfaces. Routers transport data and can be described at theOSI

network layer. As the ÆTHEREAL services are offered toIP at the transport
layer and are end to end (master to slave and vice versa), network interfaces
are required to bridge the network layer and transport layer views on commu-
nication.

Guaranteeing The Quality of Services in Networks on Chip 75

4.2.1 A guaranteed-throughput router. To give time-related
guarantees on a connection, such as throughput guarantees (on a finite time
scale) or latency bounds, the interference of other traffic in theNOC must be
limited and characterised. Circuit switching gives strong guarantees but at
a high cost: connections have to be dimensioned for the worst case traffic.
Time-division multiplexed circuit switching reduces this cost, but creating and
closing of circuits still takes much time, and grows with the size of the net-
work. The life-time of circuits must grow to amortise this cost [33]. Rate- and
deadline-based scheduling [34, 35] can characterise the worst-case contention
and offer bounds on latency, by regulating the inflow of data, but at the a high
buffer cost.

The ÆTHEREAL NOC usescontention-free routing, which is based on a
time-division-multiplexed circuit-switching approach, where one or more cir-
cuits are set up for a connection, which is assume to be relatively long-lived.
Guaranteed throughput (GT) packets never use the same link at the same time,
i.e. all contention is avoided. This can be achieved by controlling both the
time GT packets enter the network, and their speed in the network. All routers
logically have a common notion of time, embodied in a slot counter (see Fig-
ure 4.6).GT packets propagate at the rate of one router per slot counter incre-
ment. By regulating the time aGT packet is injected in the network, it is in
effect scheduled to use each successive link in its path in a successive slot, see
Figure 4.6. This method avoids the emptying and filling of circuits between

c1

c2

c3

r1 r2 r3io0

io1

io2

io3

slot table
T1(2,o2)=i0
T1(3,o2)=i1

o2

i0
i1

p3
p1p2

o2 o3

i0
i0

i3

o1 o2

i0
i0

Figure 4.6. Three routers, all in slots = 3, switch packetspi of circuit ci to outputsoi, for
T (s, oi) = ci. For each table, only the relevant columns (outputs) are shown. Input/output link
pairs are labelledioi.

switching of circuits. Conceptually it resembles input queuing with store-and-
forward routing, which results in low buffering costs becauseGT packets are
small. The end-to-end (network interface to network interface) latency is the
number of hops multiplied by the size of theGT packet. This is minimal,
once the packet has entered its slot. This model also allows multicast circuits.
GT packets are headerless, and are routed by means of slot tables in every
network interface and router. Section 4.2.3 explains how the slot tables are
programmed.

76 NETWORKS ON CHIP

4.2.2 A best-effort router. The best-effort router uses packet
switching and has a more conventional structure. Our experiments [31] indi-
cate that both input queueing with worm-hole routing or virtual-cut-through
routing, and virtual output queueing with worm-hole routing are feasible, in
terms of buffering costs. Input queueing uses fewer buffers, but suffers from
head-of-line blocking. Virtual output queueing has a higher performance but
at the cost of more buffers.

4.2.3 A combined GT-BE router. The logically separate
guaranteed (GT) and best-effort (BE) routers are combined (Figure 4.7(a)) to
share the router resources (e.g. switch and data path, Figure 4.7(b)), and to ob-
tain the advantages of both. TheGT router offers a fixed end-to-end latency for
its traffic, which has the highest priority, enforced by the arbiter. TheBE router

high−priority control path

preempt

(b) hardware view

best effort

program

guaranteed
throughput

arbitration

best effort

program

guaranteed
throughput

data path

low−priority

(a) conceptual view

switchbuffers

Figure 4.7. Two views of the combined GT-BE router.

uses all the bandwidth (slots) that has not been reserved or is not used byGT

traffic. This allows the sharing of links and data path. Resources are therefore
never left unused, when there is data, cf. Figure 4.3(b). They are either used
for critical traffic with real-time requirements (for which a completion bound
has been given), or for best-effort traffic (without a completion bound).

To allow distributed and scalable programming of connections, theGT router
slot tables (cf. Figure 4.6), are programmed by means ofBE packets, see the
arrow “program” in Figure 4.7(a&b). This can be done in a pipelined and con-
current (multiple simultaneous negotiations, also from the same the source),
and distributed (active in multiple routers) fashion. Negotiations, resulting in
slot allocations, can be done at compile time, and be configured determinis-
tically at run time. Negotiations can also be done at run time, centrally or
distributed.

4.2.4 A network interface. ÆTHEREAL network interfaces
convert theOSI network layer services of the routers to transport layer services
for the user. All connection properties (cf. Section 4.1) that are end-to-end
are implemented by the network interfaces. These are: reordering, transaction

Guaranteeing The Quality of Services in Networks on Chip 77

completion, and flow control. Unordered connections require that transaction
identifiers are used, these are added at the network interfaces. For locally or-
dered connections, reordering buffers are required in the network interfaces.
Since our routers do not reorder traffic in a connection, this is only required
for narrowcast connections at the master for responses. Transaction comple-
tion also requires resource reservations in the network interfaces. Flow control
serves to prevent overflow of buffers at the slave or master network interface.
In a credit-based approach, this requires state (credits for the amount of space
available), and additional communication (when data is consumed credits are
returned to the producer). This is taken care of by the network interface.

IPs negotiate with network interfaces to obtain connections with certain
properties. For this network interfaces may reserve resources, such as network
interface buffers and credit counters, and slots in router tables.

5. Related work
Differentiated services have received attention in general computer networks

in the context ofATM [36] and the Internet [25]. Real-time traffic schemes have
been described using rate-based and deadline-based scheduling [34, 35].

The differences between single-hop on-chip communication such as busses
and switches andNOCs are described in [24]. Bus protocols such as [22] of-
ten have time-division multiplexing and/or priorities added, such as MicroNet-
work [37], to give throughput guarantees. To reduce the guaranteed but aver-
age high latency, statistical approaches can be used (e.g. Lotterybus [38]). The
bound on completion time is then lost (cf. Section 3.1). Switches [39, 40], also
single-hop interconnects, can also offer performance guarantees.

On-chip busses with bridges [41, 42, 43], but also [44], are potentially
full-blown NOCs. By judiciously placing restrictions on topology, bridging,
and transaction models, many problems that arise in general networks can be
avoided. For example, an appropriate topology simplifies routing to a single
path, and avoids transaction reordering. Limiting a master to a single outstand-
ing transaction has the same effect. By not buffering in bridges, effectively an
end-to-end circuit is set up per transaction, avoiding reordering and the need
for end-to-end flow control. In both cases, the increasing latency of larger
networks make these simplifying assumptions untenable in the future [33, 45].

The octagon interconnect [46] is an interesting combination of packet and
circuit switching. An octagon corresponds to a single8 × 8 router that uses
circuit switching per transaction (or equivalently, packets of unlimited size),
with a high performance for a connection in an octagon. An individual octagon
can be made larger (the so-called core and edge node strategy), but this does
not scale to larger networks for the reasons mentioned above. Packet switching
can then be used instead, by using so-called bridge and member nodes strategy.

78 NETWORKS ON CHIP

At this point all generalNOC issues appear. ThisNOC seems a best-effort
architecture, at least when multiple octagons are used.

The Spin [28, 29]NOC uses packet switching with worm-hole routing and
input queuing in a fat tree topology. It is a scalable network for data transport,
but uses a parallel network (bus) for control. It is a best-effort network, and is
optimised for average performance (e.g. by the use of optimistic flow control
coupled with deflection routing). Commitment is given for packet delivery, but
latency bounds are only given statistically.

Dally et al [9] describes a preplaced meshNOCs, with IPs that are synthe-
sised in the tiles. It uses packet switching on lossless virtual channels with
end-to-end flow control. No details are given on the programming model, but
guaranteed throughput (and latency) services are supported.

In the context ofFPGAs using bit-level circuit switching to implement inter-
IP communication is expensive. A first optimisation is to use coarser cir-
cuits [47] to reduce the cost. A packet-switched interconnect with a prede-
fined set of services allows sharing of communication resources, just like for
ASICs, and enables dynamic reconfiguration [10, 11]. TheNOC can be synthe-
sised [10], but a preplaced hard-wiredNOC is the next logical step.

New SOCarchitectures that rely onNOCs include chip multiprocessing [12,
13, 14, 7, 8, 48], to interconnect the homogeneous or heterogeneous tiles, and
network processors [49].

6. Conclusions
We observe that, although future applications will be more dynamic,users

expect embedded systems to behave predictably. A design style based on guar-
anteed quality of services (QOS) can solve this apparent contradiction.De-
signersof systems on chip (SOC) use networks on chip (NOC) to keep up
with Moore’s law. NOCs solve both deep-submicron problems (e.g. signal
integrity), and narrow the design productivity gap (the efficiency with which
we designSOCs) by dividing global problems into local, decoupled problems,
e.g.GALS.

The combination ofNOCs andQOS is natural, through network protocol
stacks, and beneficial for several reasons. It enablesIP re-use and platform-
based design to decouple applications and architectures.QOS-based design
also ensures that when global problems, such as clocking, are solved by com-
bining local, decoupled solutions (e.g.GALS), the combination has a globally
predictable behaviour, as required by the user.

There are several levels ofQOS commitment, building on each other: cor-
rectness (e.g. uncorrupted transport), completion (e.g. packet delivery), and
completion bounds (e.g. maximum latency). A service without commitment
(a best-effortservice, such as unbounded latency), can have a better average

Guaranteeing The Quality of Services in Networks on Chip 79

resource utilisation than aguaranteedservice, but at the cost of unpredictable
or unbounded worst-case behaviour. Thecombination of best-effort and guar-
anteed services is advantageous: critical parts of the system are predictable,
while resources are used more efficiently.

The ÆTHEREAL NOC combines best-effort and guaranteed services at dif-
ferent levels. Its programming model and architecture are also described. The
ÆTHEREAL NOC is at the basis of aQOS-based design style, as advocated in
this chapter.

References

[1] Semiconductor Industry Association.The International Technology
Roadmap for Semiconductors. 2001.

[2] Paul Wielage and Kees Goossens. Networks on silicon: Blessing or night-
mare? InEuromicro Symposium On Digital System Design, Dortmund,
Germany, September 2002. Keynote speech.

[3] T. N. Theis. The future of interconnection technology.IBM journal of
research development, 44(3):379–390, May 2000.

[4] Marcel J. Pelgrom, Hans P. Tuinhout, and Maarten Vertregt. Transistor
matching in analog CMOS applications. InIEDM, pages 915–918, 1998.

[5] K. Keutzer, S. Malik, A. Richard Newton, Jan M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Orthogonalization of
concerns and platform-based design.IEEE Trans. on CAD of Integrated
Circuits and Systems, 19(12):1523–1543, 2000.

[6] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical
design of globally-asynchronous locally-synchronous systems. In6th In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), April 2000.

[7] Paul Stravers and Jan Hoogerbrugge. Homogeneous multiprocessing and
the future of silicon design paradigms. InVLSI-TSA, 2001.

[8] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and
Mark Horowitz. Smart memories: A modular reconfigurable architecture.
In ISCA, June 2000.

[9] William J. Dally and Brian Towles. Route packets, not wires: On-chip
interconnection networks. InDesign Automation Conference, pages 684–
689, June 2001.

[10] Théodore Marescaux, Andrei Bartic, Dideriek Verkest, Serge Vernalde,
and Rudy Lauwereins. Interconnection networks enable fine-grain dy-
namic multitasking on FPGAs.FPL, 2002. LNCS 2438.

80 NETWORKS ON CHIP

[11] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour.
Dynamic hardware plugins in an FPGA with partial run-time configura-
tion. In Design Automation Conference, June 2002.

[12] Lance Hammond, Basam A. Hayfeh, and Kunle Olokotun. A single-chip
multiprocessor.IEEE Computer, pages 79–85, September 1997.

[13] Jaehyuk Huh, Stephen W. Keckler, and Doug Burger. Exploring the de-
sign space of future CMPs. InProceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2001.

[14] Eylon Caspi, Andŕe DeHon, and John Wawrzynek. A streaming multi-
threaded model. InThird Workshop on Media and Stream Processors
(MSP-3), December 2001.

[15] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip intercon-
nect woes through communication-based design. InDesign Automation
Conference, pages 667–672, June 2001.

[16] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm.IEEE Computer, 35(1):70–80, 2002.

[17] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Networks on
silicon: Combining best-effort and guaranteed services. InProceedings
of Design Automation and Test Conference in Europe, pages 423–425,
March 2002.

[18] A. Ferrari and A. Sangiovanni-Vincentelli. System design: traditional
concepts and new paradigms. InInternational Conference on Computer
Design, pages 2–12, 1999.

[19] J. D. Day and H. Zimmerman. The OSI reference model. InProceedings
of the IEEE, volume 71, pages 1334–1340, 1983.

[20] K. G. W. Goossens and O. P. Gangwal. The cost of communication proto-
cols and coordination languages in embedded systems. In Farhad Arbab
and Carolyn Talcott, editors,Coordination languages and models, num-
ber 2315 in Lecture notes in computer science, pages 174–190. Springer
Verlag, April 2002.

[21] Steve Deering. Watching the waist of the protocol hourglass. In6th IEEE
International Conference on Network Protocols, October 1998. Keynote
speech.

[22] VSI Alliance. Virtual component interface standard, 2000.

[23] OCP International Partnership. Open core protocol specification, 2001.

[24] Andrei R̆adulescu and Kees Goossens. Communication services for net-
works on silicon. In Shuvra Bhattacharyya, Ed Deprettere, and Juer-

Guaranteeing The Quality of Services in Networks on Chip 81

gen Teich, editors,Domain-Specific Processors: Systems, Architectures,
Modeling, and Simulation. Marcel Dekker, December 2002.

[25] Vijay P. Kumar, T. V. Lashman, and Dimitrios Stiliadis. Beyond best
effort: Router architectures for the differentiated services of tomorrow’s
internet.IEEE Communications Magazine, pages 152–164, May 1998.

[26] Girish Varatkar. Traffic analysis for on-chip networks design of multime-
dia applications. InDesign Automation Conference, June 2002.

[27] Sungjoo Yoo, Kyoungseok Rha, Youngchul Cho, Jinyong Kung, and Kiy-
oung Choi. Performance estimation of multiple-cache IP-based systems:
Case study of an interdependency problem and application of an extended
shared memory model. InInternational Workshop on Hardware/Software
Codesign, May 2002.

[28] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip
packet-switched interconnections. InProceedings of Design Automation
and Test Conference in Europe, pages 250–256, 2000.

[29] Pierre Guerrier.Un Ŕeseau D’Interconnexion pour Systémes Int́egŕes.
PhD thesis, Université ParisVI , March 2000.

[30] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Low power
error resilient encoding for on-chip data buses. InProceedings of Design
Automation and Test Conference in Europe, March 2002.

[31] E. Rijpkema, K. Goossens, A. Rădulescu, J. van Meerbergen, P. Wielage,
and E. Waterlander. Trade offs in the design of a router with both guar-
anteed and best-effort services for networks on chip. InProceedings of
Design Automation and Test Conference in Europe, March 2003.

[32] Edwin Rijpkema, Kees Goossens, and Paul Wielage. A router architec-
ture for networks on silicon. InProceedings of Progress 2001, 2nd Work-
shop on Embedded Systems, Veldhoven, the Netherlands, October 2001.

[33] André DeHon. Robust, high-speed network design for large-scale multi-
processing. A.I. Technical report 1445, Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory, September 1993.

[34] Hui Zhang. Service disciplines for guaranteed performance service in
packet-switching networks.Proceedings of the IEEE, 83(10):1374–96,
October 1995.

[35] Jennifer Rexford, John Hall, and Kang G. Shin. A router architecture for
real-time communication in multicomputer networks.IEEE Transactions
on Computers, 47(10):1088–1101, October 1998.

[36] ATM Forum. ATM User-Network Interface Specification. Prentice Hall,
July 1994. Version 3.1.

[37] Drew Wingard. MicroNetworks-based integration for SOCs. InDesign
Automation Conference, 2001.

82 NETWORKS ON CHIP

[38] Kanishka Lahari, Anand Raghunathan, and Ganesh Laskhminarayana.
Lotterybus: A new high-performance communication architecture for
system-on-chip designs. InDesign Automation Conference, June 2001.

[39] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and
Jochen A.G. Jess. Stream communication between real-time tasks in a
high-performance multiprocessor. InProceedings of Design Automation
and Test Conference in Europe, pages 125–131, 1998.

[40] Paul J.M. Havinga.Mobile Multimedia Systems. PhD thesis, University
of Twente, The Netherlands, February 2000.

[41] Kyeong Keol Ryu, Eung Shin, and Vincent J Mooney. A comparison of
five different multiprocessor SoC bus architectures. InEuromicro, 2001.

[42] Tycho van Meeuwen, Arnout Vandecappelle, Allert van Zelst, Francky
Catthoor, and Diederik Verkest. System-level interconnect architectures
exploration for custum memory organizations. InInternational Sympo-
sium on System Synthesis, pages 13–18, October 2001.

[43] Milenko Drinic, Darko Kirovski, Seapahn Meguerdichian, and Miodrag
Potknojak. Latency-guided on-chip bus network design. InProc. of
IEEE/ACM International Conference on Computer Aided Design, pages
420–423, November 2000.

[44] John Bainbridge and Steve Furber. CHAIN: A delay-insensitive chip area
interconnect.IEEE Micro, 22(5), 2002.

[45] Frederic Chong, Henry Minsky, André deHon, Matthew Becker,
Samuel Peretz, Eran Egozy, and Frank F. Knight, Jr. Metro: A router
architecture for high-performance, short-haul routing networks. InInter-
national Symposium on Computer Architecture, April 1994.

[46] Faraydon Karim, Anh Nguyen, Sujit Dey, and Ramesh Rao. On-chip
communication architecture for OC-768 network processors. InDesign
Automation Conference, June 2001.

[47] André DeHon. Rent’s rule based switching requirements. InSLIP, April
2001. Extended abstract.

[48] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael
Millberg, JohnyÖberg, Tiensyrj̈a, and Ahmed Hemani. A network on
chip architecture and design methodology. InISVLSI, 2002.

[49] David Whelihan and Herman Schmit. Memory optimization in single
chip network switch fabrics. InDesign Automation Conference, June
2002.

