
Concepts and Implementation of the Philips Network-on-Chip
John Dielissen, Andrei Rădulescu, Kees Goossens, and Edwin Rijpkema

Philips Research Laboratories, Eindhoven, The Netherlands
Email: john.dielissen@philips.com

Abstract

SoC communication infrastructures, such as the Æthereal net-
work on chip (NoC), will play a central role in integrating IPs
with diverse communication requirements. To achieve a composi-
tional and predictable system design, it is essential to reduce un-
certainties in the interconnect, such as throughput and latency. In
our NoC, these uncertainties are eliminated by providing guaran-
teed throughput and latency services. Our NoC consists of routers
and network interfaces. The routers provide reliable data transfer.
The network interfaces implement, via connections, high-level ser-
vices, such as transaction ordering, throughput and latency guar-
antees, and end-to-end flow control. The network interfaces also
implement adapters to existing on-chip protocols, such as AXI,
OCP and DTL, to seamlessly connect existing IP modules to the
NoC. These services are implemented in hardware to achieve high
speed, and low area. Our NoC provides run-time reconfiguration.
We show that in the Æthereal NoC, this is achieved by using the
NoC itself, instead of an additional control network. We present an
instance of a 6-port router with an area of 0.175mm2 after lay-
out, and a network interface with 4 IP ports having a synthesized
area of 0.172mm2. Both the router and the network interface are
implemented in 0.13µm technology, and run at 500 MHz.

1 Introduction

As systems on chip (SoC) grow in complexity, the traditional
on-chip interconnects, such as buses and switches, cannot be used
anymore, due to their limited scalability. Networks on chip (NoC)
scale better, and, therefore, they are a solution to large SoCs [2–5,
7, 9–11, 14].

NoCs offer well-defined interfaces [2, 8, 14, 16], decoupling
computation from communication, and easing design. It has been
shown that NoCs can provide interfaces to existing on-chip com-
munication protocols, such as AXI [1], OCP [12], DTL [13], thus,
enabling reuse of existing IP modules [8, 15].

A disadvantage of large interconnects in general (e.g., buses
with bridges, or NoCs) is that they introduce uncertainties (e.g.,
due to contention). Applications also introduce uncertainties as
they become more dynamic and heterogeneous. All these compli-
cate integration, especially in hard real-time systems (e.g., video),
as the user expects the resulting system to be predictable.

In the Æthereal NoC, we advocate the use of differentiated ser-
vices and the use of guaranteed communication to eliminate uncer-
tainties in the interconnect, and to ease integration [8]. We allow
differentiated services by offering communication services on con-
nections that can be configured individually for different services.
Examples of properties that can be configured on a connection are

throughput and latency that can be configured to have no guar-
antees (i.e., best effort) or guaranteed for a particular bound. By
providing guarantees, our NoC offers predictable communication,
which is a first step in designing a predictable system.

In the next section, we present the Æthereal NoC, which of-
fers both guaranteed and best-effort services. The NoC consists
of routers and network interfaces. Our routers, described in Sec-
tion 2.1, use input queuing, wormhole routing, link-level flow con-
trol and source routing. It has two traffic classes for the GT and
BE data. For GT, time slots are reserved such that no contention
occurs, while for BE, we use a round-robin arbitration to solve
contention. The network interfaces, described in Section 2.2, have
a modular design, composed of kernel and shells. The NI ker-
nel provides the basic functionality, including arbitration between
connections, ordering, end-to-end flow control, packetization, and
a link protocol with the router. Shells implement (a) additional
functionality, such as multicast and narrowcast connections, and
(b) adaptors to existing protocols, such as AXI or DTL. All these
shells can be plugged in or left out at instantiation time according
to the needs to optimize area cost.

The network connections are configurable at runtime via a
memory-mapped configuration port. In Section 3, we show how
the network is used to configured itself as opposed to using a sep-
arate control interconnect for network configuration.

2 Concepts of the Network

The network on chip as is exemplified by Figure 1, consists
of two components: the routers and the network interfaces (NI).
The routers can be randomly connected amongst themselves and
to the network interfaces (i.e., there are no topology constraints).
Note that in principle there can be multiple links between routers.
The routers transport packets of data from one NI to another. The
NIs are responsible for packetization/depacketization, for imple-
menting the connections and services, and for offering a standard
interface (e.g., AXI or OCP) to the IP modules connected to the
NoC.

The Æthereal NoC provides both best-effort and guaranteed
services (e.g., latency or throughput). To implement guarantees,
we use contention-free routing, which is based on a time-division-
multiplexed circuit-switching approach, where one or more cir-
cuits are set up for a connection [14]. This requires a logical no-
tion of synchronicity, where all routers and NIs are in the same
slot. Circuits are created by reserving consecutive slots in consec-
utive routers/NIs. This is, the circuits are pipelined, in the sense
that if a circuit is set from router R to router R’, and slot s is re-
served at router R, then slot s + 1 must be reserved at router R’.
On these circuits, data received in one slot will be forwarded to the
next router/NI in the next slot. By setting up circuits, we ensure
that data is transported without contention. In this way throughput

1



NI 
kernel

C
on

fig
 S

he
ll

DTL
MMIO

D
T

L
D

T
L

S
he

lls
S

he
lls

D
T

L
D

T
L

S
he

lls
S

he
lls

DTL

DTL
DTL

DTL

NI
kernel

D
T

L

D
T

L

NI 
kernel

DTL AXI
Shells Shells

AXIDTL

DTL

DTL AXI
Shells Shells

DTL

DTL AXI

NI 
kernel

A
X

I
S

he
lls

AXI

router router

router

Figure 1. network example

and latency are guaranteed. We call this guaranteed traffic as guar-
anteed throughput (GT) data, as opposed to the best-effort (BE)
data, for which no throughput guarantees are given.

As mentioned above, circuits are set up by reserving slots.
These slots are reserved such that no more than one GT data is
scheduled at the same time on an output port of a router or NI. BE
data is transferred on the slots that are not used by the GT data:
either the slots are unreserved, or the slots are reserved, but not
used. BE data can be delayed because of the higher priority GT
data, or because of contention on the ports.

In the following sections, we describe in detail the router and
NI architectures.

2.1 Router Architecture

Routers send data from one network interface to the other by
means of packets. Such a packet consists of one or more flits, were
a flit is the minimal transmission unit. As a transmission scheme
we use wormhole routing, because of the low cost (the buffer ca-
pacity can be less than the length of a packet) and low latency (the
router can start forwarding the first flit of a packet without waiting
for the tail). To reduce queuing capacity of a router, and thus the
area, input queuing is used, as shown in Figure 2.

We select source routing as an addressing scheme, because it
allows topology independence, while at the same time has a low
cost: no expensive (programmable) lookup tables are needed in
the router. In source routing the path on which the packet travels
is included in the header of a packet. In Æthereal, this path is a list
of destination ports, from which each router on the path removes
the first element for its own use.

In the Æthereal network guarantees are given by statically cal-
culating the GT schedule. In this way conflicts at the destination
ports at each router can be avoided. In fact a pipelined circuit
switching network is set-up. Since the network is distributed, also
the circuit switching configuration, being the time at which GT-
packets arrive and to which destination port they have to go, has
to be distributed In earlier versions of the Æthereal router [14],
this was done in ”local” slot tables. When programming a GT-

controller

switch

fc fc

header
parsing

unit

header
parsing

unit

header
parsing

unit

pck

pck

pck

pck

pck

pck

GT

BE

GT

BE

GT

BE

Figure 2. Router architecture

connection, all slot tables on the path are consulted to avoid con-
flicts in the schedule. In this way distributed programming is en-
abled, which is essential for large networks. However, for the next
years we expect the network to be small and a centralized program-
ming scheme is chosen, for which no ”local” slot table is needed.
The area cost of the ”local” slot table is quite high because first
of all, the table itself costs area (approximately 25% of the total
area of a router with 6 bidirectional ports and 256 slots), and sec-
ond the programming unit, and the connected additional port on
the router have to be provided (an additional 25%). In this paper
we present a NoC with centralized configuration. We include the
switching configuration (the path) in the packet header, and, as a
consequence the slot tables are removed from the routers.

Besides the path, the header also contains information for the
Network interface, which is explained in section 2.2.1. As ex-
plained, a network packet is build up of one or more network flits.
For the current Æthereal network, the flit size is chosen 3 to op-
timize the data clock frequency and control frequency. The in-
formation of the type of flit is annotated in the first element of the
sideband information, being the id. The format of the flits is shown
in Figure 3. The figure shows that the flit contains a header and 2
payload words. Only the first flit of a packet has a header and as
a consequence, the next flits can have 3 payload words. Note that
when packets consist of multiple flits, the overhead of the header is
reduced. The amount of valid words in the flit is stored in the size
field. The end of the packet is notified by the eop flag in the side-
band information. As an example, Figure 4 shows how a packet,
containing 10 payload words can be build up.

GT and BE-flits are semantically the same, but they are han-
dled differently by the scheduler: GT-flits are always scheduled
for the next cycle. The BE-flits are scheduled to the remaining
destination ports according a round-robin schedule. Ones a first
flit of a BE-packet is send to a certain destination port, than port
remains locked until the packet is finished: the port does not sched-
ule BE-flits from the other input ports. In this way the interleav-
ing of BE-packets is avoided, which makes implementation simple
and cheap. Note that BE-packets can still be interleaved with GT-
packets. For GT-flits the interleaving amongst themselves has to
be avoided in the static schedule.

The router has a controller and a data path elements. In the data
path, the input messages, from either routers or network interfaces

2



size

id

eop

credit

payload 0

payload 1

qid path

Figure 3. Network flits

2

BE

0

6

payload 0

payload 1

2 2,3,0,0,1

3

BE

0

3

BE

0

2

BE

eop

payload 2
payload 3

payload 4

payload 5
payload 6

payload 7

payload 8
payload 9

fli
t

fli
t

fli
t

fli
t

pa
ck

et

P
ay

lo
ad

Figure 4. BE-packet example

are parsed by the header-parsing units (hpu). These units, shown
in Figure 2, remove the first element for the path, send the parsed
flits into GT or BE queues and notify the controller that there is
a packet. The controller schedules flits for the next cycle. After
scheduling the GT-flits, the remaining destination ports can serve
the BE-flits. In the case of conflicts (e.g. two BE-flits address
the same destination), a round-robin arbitration scheme is applied.
The controller sets the switches in the right direction for the dura-
tion of the next flit cycle. Furthermore the read commands will be
given to the fifo’s.

To avoid overflow in the BE-input queues, a link-level flow
control scheme is implemented. Each router is initialized with the
amount of free space in the connected routers and network inter-
faces. Every time a flit is send to a next router, the free space
counter corresponding to that destination port is decremented.
When a router schedules a flit for the next slot, it signals its pre-
decessor that the free space counter can be incremented. Since
GT-packets follow a pipelined circuit, a GT-flit is always send to
the next router in the next cycle, and therefore link-level flow con-
trol can be omitted.

2.1.1 Implementation

We synthesized and layouted in a 0.13µm technology a prototype
router with 6 bidirectional ports, and BE input queues of 32-bit
wide and 24-word deep each (see Figure 5). In the floorplan the
area-efficient custom-made hardware fifos, that we use for the BE
and GT queues, are clearly visible. The design is fully testable
using the well known scan-chain test method, and power stipes are
included. The total area of the router sums up to 0.175mm2. The
router runs at a frequency of 500 MHz, and delivers a bandwidth
of 16 Gbit/s per link in each direction.

BE BE BE BE BE BE

GT GT GT GT GT GT

Figure 5. Layout of a router with 6 bidirec-
tional ports

2.2 Network Interface Architecture

The network interface (NI) is the component that provides the
conversion of the packet-based communication of the network to
the higher-level protocol that IP modules use. We split the design
of the network interface in two parts: (a) the NI kernel, which
packetizes messages and schedules them to the routers, imple-
ments the end-to-end flow control, and the clock domain crossing,
and (b) the NI shells, which implement the connections (e.g., nar-
rowcast, multicast), transaction ordering, and other higher-level
issues specific to the protocol offered to the IP. We describe the
architectures of the NI kernel and the NI shells in the next two
sections, and the results for their implementation in Section 2.2.3.

2.2.1 NI Kernel Architecture

The NI kernel (see Figure 6) receives and provides messages,
which contain the data provided by the IP modules via their pro-
tocol after sequentialization. The message structure may vary de-
pending on the protocol used by the IP module. However, the
message structure is irrelevant for the NI kernel, as it just sees
messages as pieces of data that must be transported over the NoC.

The NI kernel communicates with the NI shells via ports. At
each port, peer-to-peer connections can be configured, their num-
ber being selected at NI instantiation time. A port can have mul-
tiple connection to allow differentiated traffic classes (e.g., best
effort, or guaranteed throughput), in which case there are also
connid signals to select on which connection a message is sup-
plied or consumed.

For each connection, there are two message queues (one source
queue, for messages going to the network, and one destination
queue, for messages coming from the network) in the NI kernel.
Their size is also selected at the NI instantiation time. Queues
provide the clock domain crossing between the network and the IP
modules. Each port can, therefore, have a different frequency.

Each channel is configured individually. In a first prototype of
the Æthereal network interface, we can configure if a channel is

3



connid
msg

Scheduler

Pck

STU

Depck

Space

Limit

msg

msg

msg

chid

msg

msg

msg

chid

pck

data port

data port router port

pck

Credit

connid
msg

msg
msg

data port

msg
msg

pck
pck

Path

BE/GT

Clock domain
boundary

msg msg

Source
queues

Destination
queues

config.
port

Figure 6. Network interface kernel

best effort (BE) or providing timing guarantees (GT), reserve slots
in the latter case, configure the end-to-end flow control, and the
routing information.

End-to-end flow control ensures that no data is sent unless there
is enough space in the destination buffer to accommodate it. This
is implemented using credits [17]. For each channel, there is a
counter (Space) tracking the empty buffer space of the remote
destination queue. This counter is configured with the remote
buffer size. When data is sent from the source queue, the counter
is decremented. When data is consumed by the IP module at the
other side, credits are produced in a counter (Credit) to indicate
that more empty space is available. These credits are sent to the
producer of data to be added to its Space counter. In the Æthe-
real prototype, we piggyback credits in the header of the packets
for the data in the other direction to improve network efficiency.
Note that at most Space data items can be transmitted. We call
sendable data, the minimum between the data items in the queue
and the value in the counter Space.

From the source queues, data is packetized (Pck) and sent to
the network via a single link. A packet header consists of the rout-
ing information (NI address for destination routing, and path for
source routing), remote queue id (i.e., the queue of the remote net-
work interface in which the data will be stored), and piggybacked
credits (see Figure 3).

There are multiple channels which may require data transmis-
sion, we implement a scheduler to arbitrate between them. A
queue becomes eligible for scheduling when either there is send-
able data (i.e., there is data to be sent, and is space in the channel’s
destination buffer), or when there are credits to send. In this way,
when there is no sendable data, it is still possible to send credits in
an empty packet.

The scheduler checks if the current slot is reserved for a GT
channel. If the slot is reserved and the GT channel is eligible for

DTL

DTL

AXI

AXI

NI kernel

na
rr

ow
ca

st

m
ul

tic
as

t

A
X

I a
da

pt
er

D
T

L 
ad

ap
te

r

Network interface (NI)NI 
ports

Router

user network

Figure 7. NI kernel and shells

scheduling, then the channel is granted data transmission. Oth-
erwise, the scheduler selects an eligible BE channel using some
arbitration scheme: e.g. round-robin, weighted round-robin, or
based on the queue filling.

Once a queue is selected, a packet containing the largest pos-
sible amount of credits and data will be produced. The amount of
credits is bound by implementation to the given number of bits in
the packet header, and packets have a maximum length to avoid
links being used exclusively by a packet/channel, leading to con-
gestion.

On the outgoing path, packets are depacketized, credits are
added to the counter Space, and data is stored in its correspond-
ing queue, which is given by a queue id field in the header.

2.2.2 NI Shells: The interface to the IP

With the NI kernel described in the previous section, peer-to-peer
connections (i.e., between on master and one slave) can be sup-
ported directly. These type of connections are useful in systems
involving chains of modules communicating peer-to-peer with one
another (e.g., video pixel processing [6]).

For more complex type of connections, such as narrowcast or
multicast, and to provide conversions to other protocols, we add
shells around the NI kernel. As an example, in Figure 7, we show
a network interface with two DTL and two AXI ports. All ports
provide peer-to-peer connections. In addition to this, the two DTL
ports provide narrowcast connections, and one DTL and one AXI
port provide multicast connections. Note that these shells add spe-
cific functionality, and can be plugged in or left out at design time
according to the requirements. Network instantiation is simple, as
we use an XML description to automatically generate the VHDL
code for the NIs as well as for the network topology.

In Figures 8 and 9, we show a master and slave shells that im-
plement a simplified version of a protocol such as AXI. The basic
functionality of such a shell is to sequentialize commands and their
flags, addresses, and write data in request messages, and to dese-
quentialize messages into read data, and write responses. Exam-
ples of the message structures (i.e., after sequentialization) passing
from NI shells and NI kernel are shown in Figure 10.

In full-fledged master and slave shells, more blocks would be
added to implement e.g., the unbuffered writes at the master side,
and read linked, write conditional at the slave side.

4



wr_data

cmd+flags

addr

rd_data

wr_resp

Seq

Deseq

msg

msg

Figure 8. Master
shell

wr_data

cmd+flags

addr

rd_data

wr_resp

Deseq

Seq

msg

msg

Figure 9. Slave
shell

2.2.3 Implementation

We have synthesized an instance of a NI kernel with a slot table
of 16 slots, and 4 ports having 1, 1, 2, and 4 channels, respec-
tively, with all queues being 32-bit wide and 8-word deep. The
queues are area-efficient custom-made hardware fifos. We use
these fifos instead of RAMs, because we need simultaneous ac-
cess at all NI ports (possibly running at different speeds) as well
as simultaneous read and write access for incoming and outgoing
packets, which cannot be offered with a single RAM. Moreover,
for the small queues needed in the NI, multiple RAMs have a too
large area overhead. Furthermore the hardware fifos implement
the clock domain boundary allowing each NI port to run at a dif-
ferent frequency. The rest of the NI kernel runs at a frequency of
500 MHz, and delivers a bandwidth towards the router of 16 Gbit/s
in each direction. The synthesized area for this NI-kernel instance
is 0.13 mm2 in a 0.13µm technology.

Next to the kernel there are also a number of shells to imple-
ment one configuration port, two master ports, and one slave port.
These shells add to the are another 0.04 mm2, resulting in a total
NI area of 0.172 mm2.

3 Network Configuration

As mentioned in Section 2.1, in our prototype Æthereal net-
work, we opt for centralized programming. This means that
there is a single configuration module that configures the whole
network, and that slot tables can be removed from the routers.

cmd length flags

address

write data 1

write data N

. . .

trans id

error

read data 1

read data N

. . .

trans id

seq no.

seq no.

Request message format

Response message format

Figure 10. Message format examples

2

1

NI 
kernel

C
on

fig
 S

he
ll

DTL
MMIO

Router
networkD

T
L

D
T

L
S

he
lls

S
he

lls

D
T

L
D

T
L

S
he

lls
S

he
llsA

(slave)

C
(master)

B
(master)

D
(slave)

1,3 2,4

4

3

DTL

DTL DTL

DTL

Cfg
(master)

NI1 NI2

NI
kernel

D
T

L

D
T

L

Figure 11. NI configuration

Consequently, only the NIs need to be programmed when open-
ing/closing connections.

NIs are programmed via a configuration port (the DTL MMIO
port on which the Cfg modules is connected). This port offers
a memory-mapped view on all control registers in the NIs. This
means that the registers in any NI are readable and writable using
normal read and write transactions.

Configuration is performed using the network itself (i.e., there
is no separate control interconnect needed for network program-
ming). This is done by directly connecting the NI configuration
ports to the network like any other slave (see NI2’s configuration
port in Figure 11).

At the configuration module Cfg’s NI, we introduce a configu-
ration shell (Config Shell), which, based on the address configures
the local NI (NI1), or sends configuration messages via the net-
work to other NIs. The configuration shell optimizes away the
need for an extra data port at NI1 to be connected to the NI1’s
configuration port.

In Figure 12, we show the necessary steps in setting up a con-
nection between two modules (master B and slave A) from a con-
figuration module (Cfg). Like for any other memory-mapped reg-
ister, before sending configuration messages for programming the
B to A connection, a connection to the remote NI must be set up.
This involves two channels, one for the requests and and one for
the responses between NI1 and the configuration port of NI2. This
connection is opened in two steps. First, the channel to the remote
NI configuration port is set up by writing the necessary registers
in NI1 (Step 1 in Figures 11 and 12). Second, we use this channel
to set up (via the network) the channel from configuration port of
NI2 to the configuration port of NI1 (Step 2). The three shown
messages are delivered and executed in order at NI2. The last of
them also requests an acknowledgment message to confirm that
the channel has been successfully set up.

After these two configuration channels have been set up, the
remote NI2 can be safely programmed. We can, therefore, proceed
to setting up a connection from B to A. For programming NI2
(B’s NI), the previously set up configuration connection is used.
For programming NI1, the NI1’s configuration port is accessed
directly via Config Shell. First, the channel from the slave
module A to the master module B is configured by programming
NI1 (Step 3). Second, the channel from the master module B to the
slave module A is configured (Step 4) through messages to NI2.

5



A Cfg
NI1
data

NI2
data

NI 2
cfg B

NI1
cfg

Setting up
configuration 

connection

1. Setting up
channel

NI1 -> NI2

Setting up
connection
from B to A

B can issue 
requests to A. and

A can respond

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

wr be, enable

wr space

wr path, rqid

2. Setting up
channel

NI2 -> NI1

3. Setting up
channel
A -> B

4. Setting up
channel
B -> A

data

wr, data

rd

Figure 12. Connection configuration example

4 Conclusions

In this paper, we present the Æthereal network on chip, de-
veloped at the Philips Research Laboratories. This network of-
fers, via connections, high-level services, such as transaction or-
dering, throughput and latency guarantees, and end-to-end flow
control. The throughput/latency guarantees are implemented us-
ing pipelined time-division-multiplexed circuit-switching.

The network consists of routers and network interfaces. The
routers use input queuing, wormhole routing, link-level flow con-
trol and source routing. It has two traffic classes for the GT and
BE data. For GT, time slots are reserved such that no contention
occurs, while for BE, we use a round-robin arbitration to solve
contention. We show an instance of a router with 6 bidirectional
ports, and BE input queues of 32-bit wide and 24-word deep each
implemented using custom-made fifos. This router has an area
of 0.175mm2 after layout in 0.13µm technology, and runs at 500
MHz. This has been achieved by omitting the slot tables, and mak-
ing low area cost decisions at all levels.

The network interfaces have a modular design, composed of
kernel and shells. The NI kernel provides the basic functionality,
including arbitration between connections, ordering, end-to-end
flow control, packetization, and a link protocol with the router.
Shells implement (a) additional functionality, such as multicast
and narrowcast connections, and (b) adaptors to existing protocols,
such as AXI or DTL. All these shells can be plugged in or left out
at instantiation time according to the needs to optimize area cost.

We show an instance of our network interface with a slot table

of 16 slots, and 4 ports having 1, 1, 2, and 4 channels, respec-
tively. All queues are 32-bit wide and 8-word deep, and are imple-
mented using custom-made fifos. These fifos also implement the
clock domain boundary allowing NI ports to run at a different fre-
quency than the network. The NI kernel runs at a frequency of 500
MHz. The synthesized area for the complete network interface is
0.172 mm2 in a 0.13µm technology,

The network connections are configurable at runtime via a
memory-mapped configuration port. We use the network to con-
figured itself as opposed to using a separate control interconnect
for network configuration.

In conclusion, we provide efficient network offering high-level
services (including guarantees), which allows runtime network
programming using the network itself.

References

[1] ARM. AMBA AXI Protocol Specification, June 2003.
[2] L. Benini et al. Powering networks on chips. In ISSS, 2001.
[3] L. Benini et al. Networks on chips: A new SoC paradigm.

IEEE Computer, 35(1):70–80, 2002.
[4] E. Bolotin et al. QNoC: QoS architecture and design process

for network on chip. Journal of Systems Architecture, 49,
Dec. 2003. Special issue on Networks on Chip.

[5] W. J. Dally et al. Route packets, not wires: On-chip inter-
connection networks. In DAC, 2001.

[6] O. P. Gangwal et al. Understanding video pixel process-
ing applications for flexible implementations. In Euromicro
DSD, 2003.

[7] K. Goossens et al. Networks on silicon: Combining best-
effort and guaranteed services. In DATE, 2002.

[8] K. Goossens et al. Guaranteeing the quality of services in
networks on chip. In J. Nurmi, H. Tenhunen, J. Isoaho, and
A. Jantsch, editors, Networks on Chip, pages 61–82. Kluwer,
2003.

[9] P. Guerrier et al. A generic architecture for on-chip packet-
switched interconnections. In DATE, 2000.

[10] F. Karim et al. An interconnect architecture for networking
systems on chip. IEEE Micro, 22(5), 2002.

[11] S. Kumar et al. A network on chip architecture and design
methodology. In ISVLSI, 2002.

[12] OCP International Partnership. Open Core Protocol Specifi-
cation. 2.0 Release Candidate, 2003.

[13] Philips Semiconductors. Device Transaction Level (DTL)
Protocol Specification. Version 2.2, July 2002.

[14] E. Rijpkema et al. Trade offs in the design of a router
with both guaranteed and best-effort services for networks
on chip. In DATE, 2003.

[15] A. Rădulescu et al. Communication services for networks
on chip. In S. Bhattacharyya, E. Deprettere, and J. Teich,
editors, Domain-Specific Embedded Multiprocessors. Mar-
cel Dekker, 2003. to appear.

[16] M. Sgroi et al. Addressing the system-on-a-chip interconnect
woes through communication-based design. In DAC, 2001.

[17] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

6


