
IEEE Communications Magazine • September 200374 0163-6804/03/$17.00 © 2003 IEEE

TESTING AND VERIFICATION OF
COMMUNICATION SYSTEM-ON-CHIP DEVICES

INTRODUCTION

High-performance networking requires dedicat-
ed hardware with tremendous computational
and communication performance. Network com-
ponents such as network interfaces and routers
are complex systems that are built in a modular
fashion by combining many application-specific
integrated circuits (ASICs). With increasing
packet throughput, ASIC performance must
increase. Moreover, trends toward differentiated
services and higher quality of service require
additional performance. Examples are more dis-
cerning packet classification, traffic shaping, net-
work management, and debug. To address these
issues networking ASICs must become more ver-
satile and programmable, often evolving toward
network processors.

To indicate that network processors and
ASICs are complex systems in themselves, they
are usually named systems on a chip (SOCs). The
number of components in an SOC is growing
rapidly, and the communication infrastructure
on a single SOC is a major concern. In fact, on-
chip interconnect will increasingly be implement-
ed as a network on a chip (NOC), complete with
network interfaces, routers, and packet or circuit
switching. Although the distances over which

communication takes place differ by many orders
of magnitude, the fields of on-chip networking
and computer networking are clearly related.

We show why and how NOCs are used to
implement SOC communication needs, and illus-
trate why their implementation is different from
that of computer networks. We outline Philips’
ÆTHEREAL NOC, which is one such solution.

We consider how an SOC, constructed from
many hardware blocks (called cores), and an
NOC can be tested for manufacturing defects.
We describe the functional verification of an
SOC, verification of an NOC, and how an NOC
can aid in verifying an SOC. We present how an
application, mapped onto an SOC with an NOC,
can be verified. We end this article with conclu-
sions and highlight future work in the develop-
ment of the Philips ÆTHEREAL NOC.

NETWORKS ON CHIP
To manage the complexity of designing an SOC
containing multiple cores, design teams are
adopting core reuse methodologies. These
methodologies allow cores, once designed, to be
reused in multiple SOCs. As a result, the com-
plexity of building a complete SOC shifts from
the design of the individual cores to the design
of the communication architecture connecting
the cores. To prevent the design of this commu-
nication architecture from becoming the bottle-
neck in the design of future SOCs, this
communication architecture itself must be com-
positional and scalable.

A single broadcast medium, such as Amba
and silicon backplane [1] buses, already can no
longer deliver the required global bandwidth
and latency for current SOCs. Switches such as
the multilayer Amba and Prophid provide some
relief, but are ultimately not scalable. Mirror-
ing computer networks, a trend can be
observed toward using networks of routers with
circuit or packet switching to implement on-
chip communication [2, 3]. Of particular inter-

Bart Vermeulen, John Dielissen, and Kees Goossens, Philips Research Laboratories

Calin Ciordas, Eindhoven University of Technology

ABSTRACT

In this article we present test and verification
challenges for system chips that utilize on-chip
networks. These SOCs and networks on a chip
are introduced, where the NOC is exemplified
by Philips’ ÆTHEREAL NOC architecture. We
discuss existing test and verification methods for
SOCs and NOCs, and show the particular advan-
tages of using an NOC for both testing and veri-
fying the network, and testing and verifying the
other components of the SOC. This article is
concluded with our experiences with NOCs and
a description of ongoing work within Philips in
this emerging field.

Bringing Communication Networks on a
Chip: Test and Verification Implications

IEEE Communications Magazine • September 2003 75

est are SOCs for networking applications that
themselves use NOCs. Examples of SOCs with
an on-chip mesh of packet-switched routers to
implement a single-chip switch are given in [4,
5]. Karim et al. [6] show how a network proces-
sor for OC-768 uses a hybrid circuit-/packet-
switched NOC.

Although computer networks and on-chip
networks share many requirements, there are
also a number of differences, which can lead to
different trade-offs [2,7] and hence different
architectures. Examples are:
• Quality of service beyond best effort traffic

is probably more important in SOCs for
consumer electronics than for Internet ser-
vices, due to their embedded, real-time,
often safety-critical nature [7]. Consumer
applications have to be robust and require
predictable performance.

• The conditions on a chip are currently more
stable than off-chip. On-chip routers are
considered either faulty or correct; hence,
the network topology is static, and not
upgradable after the chip leaves the factory.

• Routers and network interfaces of an NOC
are more resource constrained than those
in computer networks because they are
intended for mainstream consumer prod-
ucts. As a consequence, the chip area must
be minimized, leading to few and shallow
buffers, fast and simple arbitration, limited
traffic shaping, and so on.

• On-chip communication links are relatively
short compared to those in computer net-
works. Pipelining or transmission-line
effects are therefore absent. This advantage
partially offsets the severe resource con-
straints: buffers can be small due to the
tight synchronization between routers, and
buffer overflow can be prevented by using
flow control.

• In contrast to computer networks, inter-
router wires are relatively abundant in
NOCs [2]. Links can be wide, and their uti-
lization is probably less important.
Within Philips, the need to manage present-

day and future on-chip communication demands
spurred the development of the ÆTHEREAL
NOC. Details of its architecture are presented in
the next section.

THE ÆTHEREAL
NETWORK ON CHIP

THE ÆTHEREAL ARCHITECTURE

The Philips ÆTHEREAL NOC [7, 8] addresses
the communication needs of consumer electron-
ics SOCs with real-time requirements, such as
those used in digital video set-top boxes. Figure
1 shows an example SOC consisting of cores and
an ÆTHEREAL NOC.

Cores communicate with each other using the
NOC, and include memories (Mi), pro-
grammable or dedicated processors (Pi), and
external memory interfaces (MIi). The NOC
consists of routers (Ri) and network interfaces
(NIi), which are linked by nonpipelined wires.
These routers and NIs are described in more
detail in the following subsections.

� Figure 1. Example SOC with an ÆTHEREAL NOC.

To
external
memory

NoC

SoC

M1P1 P2 P3 M2

NI2NI1

NI6

NI4NI3

R3

NI9

R2

R5

NI5

MI1 P4 M3

R1

R4

NI8NI7

� Figure 2. Two views of the combined GT-BE router: a) conceptual view; b) hardware view.

Guaranteed
throughput

Best effort

Buffers Switch

Program
Preempt

Data path

Control path

Program

Low-priority High-priority

Best effort

Guaranteed
throughput

Arbitration

(a) (b)

IEEE Communications Magazine • September 200376

THE ÆTHEREAL ROUTER

Conceptually, the ÆTHEREAL router module
consists of two independent routers (Fig. 2a).

The best effort (BE) router offers uncorrupted
lossless (flow-controlled) ordered data transport.
The guaranteed throughput (GT) router adds
hard throughput and latency guarantees over a
finite time interval. The GT router fulfils our
real-time service requirement, and combining it
with a BE router ensures efficient resource uti-
lization.

The Guaranteed Throughput Router — To
offer not just statistical but also hard guaranteed
latency, the network and hence the routers must
be lossless. Besides this easy-to-solve property,
contention must also be eliminated or quantified
to be able to provide a guarantee. Rate-based
and deadline-based scheduling offer guarantees
[9], but require deep output or priority queues.
These queues are too costly for on-chip use. A
low-cost alternative is to avoid contention com-
pletely by scheduling packets at the network
edge such that they are never in the same place,
never there at the same time, or a combination.
The ÆTHEREAL GT router uses a combination
of both with time-division multiplexed pipelined
circuits. Every router and network interface
block contains a slot table T(s, o) = i, defining
for a given slot s from which input i output o
takes its data, if available. For this approach to
work, all NOC blocks must share a common
notion of time to ensure that their slot tables
remain aligned. This is feasible in NOCs using
mesochronous clocking (synchronous clocks with
constant skew), or asynchronous hand shaking,
as described by Öberg in [7, Ch. 8]. BE packets
are used to program the slot tables to set up and
tear down GT connections, akin to asynchronous
transfer mode (ATM). This is shown in Fig. 2a
by the arrow labeled program. Router program-
ming packets follow the same route as the con-
nection they program. Slot allocations can be
computed and programmed at runtime in a dis-
tributed manner, or (pre-)computed offline and
then configured at runtime.

The Best Effort Router — The BE router is a
classical input-queued wormhole router, and
uses round-robin arbitration for fairness. Data

packets are never reordered in the router, and
because deterministic routing is used, ordering is
preserved end to end. Programming packets are
shunted to a programming module in the router,
and spliced in the data stream after they have
programmed the slot table.

The Combined Router — As shown in Fig. 2b,
the control paths of the BE and GT routers are
separate, yet interrelated. Moreover, the arbi-
tration unit (including link-level flow control for
the BE router) of Fig. 2a has been merged with
the BE router itself. The data path, mainly con-
sisting of the switch matrix, is shared. In com-
puter network router architectures, the buffers
of BE and GT traffic would be stored in a
shared RAM. For the small amount of buffering
in on-chip routers (in our case, 3 words/GT
queue and 24 words/BE queue) using either
RAMs or register file memories would be very
area inefficient. By using dedicated GT and BE
hardware first in first out buffers (FIFOs) (GQ
and BQ in Fig. 3), the area of the router is
reduced by two-thirds.

We synthesized an arity 5 router with a BE
queue depth of 24 words of 32 bits, and a 256-
slot table (STU) in 0.12 µ technology. The lay-
out is shown in Fig. 3. It has an aggregate
bandwidth of 5 × 500 MHz × 32 bits = 80 Gb/s.
The area of the router is 0.26 mm2 in a 0.12 µ
CMOS process using 6 metal layers.

THE ÆTHEREAL NETWORK INTERFACE
The network interface is the bridge between a
core and a router, where in general more cores
can be connected to one network interface. It
implements end-to-end flow control, admission
control, and traffic shaping, connection setup
and teardown, and transaction reordering. Like
the router it contains a slot table, but has dedi-
cated hardware FIFOs per connection.

MANUFACTURING TEST
Like all other SOCs, an NOC-based SOC has to
be tested for manufacturing defects. The NOC
can be considered just another core of an SOC,
but it is also special in two ways:
• It is often composed of many identical sub-

cores (routers and network interfaces).

� Figure 3. Layout of a combined GT-BE router.

STU

BQ

GQ

IEEE Communications Magazine • September 2003 77

• It occupies a privileged central position in
the SOC by virtue of its interconnecting
role.

In this section we explore the most relevant
options for efficiently and effectively testing an
SOC with an NOC.

SOC MANUFACTURING TEST
With the design of a scalable and modular
SOC comes the issue of testing for manufactur-
ing defects. Over the last years, several
advances have been made in SOC testing.
IEEE P1500 [10] is standardizing a core-based
test approach in which cores are wrapped in a
test wrapper to allow easy testing of that core
in a SOC. A so-called test access mechanism
(TAM) is used in conjunction with test wrap-
pers around the core to transport test data to
and from a core under test. Combined they
allow application-independent test access to all
on-chip cores. An example of this core-based
test approach is shown in Fig. 4.

In test mode, the SOC cores are distributed
over four TAMs connected to the four I/O
interfaces of the chip. In Fig. 4, these four
TAMs are indicated by deep orange, deep
green, light orange, and light green. During
scan test all TAMs are used in parallel to mini-
mize the total test time. A disadvantage of this
method is that it requires additional wires to be
added to the design to form the TAMs. In net-
work chips, adding these TAMs on top of an
already large number of interconnects might
cause wire congestion problems during layout
of the design.

Built-in self-test (BIST) is another popular
approach to test mainly regular logic blocks,
such as on-chip memories. Advances have been
made to extend the use of BIST to other cores
as well. Techniques such as random test pattern
generation in combination with test point inser-
tion or bit flipping [11] are used to test these
blocks efficiently.

Typically the traditional stuck-at fault test
patterns are used, complemented by both delay
fault test patterns and possibly IDDQ or
∆IDDQ test patterns to meet test quality
requirements.

TESTING THE NOC
Given the NOC’s regular and hierarchical struc-
ture, it makes sense to adopt a core-based test
approach. If we know the function of the core-
under test (i.e., an NOC), we can utilize this
knowledge to modify the standard core-based
test approach to obtain a better suited test. Fig-
ure 5a shows a possible core-based approach for
an SOC with an NOC.

The blocks that make up the NOC are tested
first. If the NOC contains a fault, the entire
SOC can be sent off for diagnosis without testing
it further in the production line. This leads to a
reduction in test time and consequently a savings
in test cost.

The concept of test reuse can be taken one
step further. While testing the NOC, all identical
blocks (e.g., all routers) can reuse the same test
data. This test data set is broadcast and applied

� Figure 4. Default core-based testing.

NoC

SoC

M1P1 P2 P3 M2

NI2NI1

NI6

NI4NI3

R3

NI9

R2

R5

NI5

MI1 P4 M3

R1

R4

NI8NI7

� Figure 5. Testing an SOC with a NOC.

NoC

SoC

(a)

NI1

NI6

NI2 NI3 NI4

R1

P1 P2 M1 P3 M2

R2

R4 R5

R3

NI7

MI7 P4 M3

NI8 NI9

NI5

SoC

(b)

P1 P2 M1 P3 M2

MI7 P4 M3

NoC

IEEE Communications Magazine • September 200378

to all routers at the same time. The responses
can be compared to each other and any mis-
matches sent off-chip. This allows for a very effi-
cient pass-fail decision on the NOC. Note that
each block still needs to be made uniquely acces-
sible for diagnostic purposes.

Timing tests are also very important for test-
ing an NOC because:
• All clock boundaries between cores are

inside the network interface.
• The NOC is spread over the entire SOC

and therefore has many long wires.
These interconnection wires are more vulnerable
to timing errors and crosstalk than others. Send-
ing delay fault test patterns with high fault cov-
erage over all communication links therefore
increases the overall fault coverage. When NOCs
become very large, additional test strategies such
as those applied in field programmable gate
arrays (FPGAs) can also be included, as
described by Ubar et al. [7, Ch. 7].

TESTING AN SOC THROUGH ITS NOC
After the NOC has been structurally tested, the
network can be used to functionally transport
test data to and from the cores in a very flexible
way. Figure 5b shows how the functionality of
the NOC is used during the test of the other
blocks in the SOC. The NOC is now considered
a known correct block that can be used to trans-
port data from the device pins to the core under
test and back. An advantage of reusing the NOC
functionality is that no new TAM wires need be
added to the design, as the existing NOC wires
are reused. The flexibility of the NOC also
enables the simultaneous distribution of test
data to multiple identical cores. The test data
itself can come from off chip or an internal
BIST module.

When an SOC has structural errors, there are
three possibilities:
1 The SOC is thrown away.
2 Redundant hardware present on the SOC

can replace the faulty cores (repair).
3 The SOC is sold as a lower-performance

SOC.
In cases 2 and 3, the NOC’s flexibility is used

to advantage. During the manufacturing test, the
error information must be collected and subse-
quently permanently stored inside the SOC.

SILICON VERIFICATION
Silicon verification involves checking whether
the hardware design is correct, assuming it has
been manufactured correctly. This process is
often referred to as silicon debug, as the goal is
to try to find any remaining design errors that
might have slipped through the pre-silicon verifi-
cation stages. In this section we first discuss sili-
con debug of SOCs and communication
networks. We then look in more detail at the
options for verifying an NOC as part of an SOC,
and how an NOC can be used for verification of
the other cores of the SOC.

SOC SILICON VERIFICATION
Many companies have adopted design-for-debug
strategies to allow prototype silicon to be effi-
ciently and effectively verified [12–14]. The

methods they use can be split into two comple-
mentary categories: those that change the con-
figuration of the hardware of the chip to access
debug data (intrusive) and those that can acquire
debug data in parallel to the functional hardware
(nonintrusive).

Intrusive debug: This category covers all
debug methods that impact the application
before debug data can be examined. These meth-
ods add on-chip breakpoint modules to the
design of the SOC. These breakpoint modules
interrupt the execution of the chip, after an
internal sequence of events has been detected.
All functional processing is at that point frozen.
Various methods are then applied to access
internal data. Commonly used access paths
included system bus read and writes, TAP-based
DMA access, and TAP-based scan-chain access
[14].

Nonintrusive debug: This category covers
those debug methods that allow examination of
debug data in real time by streaming data for
debug to an on-chip memory or out of the chip
via a set of dedicated chip pins. Examples
include the EJTAG and the IEEE-ISTO 5001
NEXUS standard. These methods add hardware
to the design that only observes the functionality
of the chip, operating completely in parallel to
it. This allows the application to run at actual
operating frequencies. As this debug architec-
ture is completely separate (apart from probe
points) from the functional hardware, care must
be taken to keep the associated area cost within
acceptable limits.

A hybrid solution is often chosen, combining
these two methods, depending on the specific
debug requirements.

NETWORK VERIFICATION
In contrast to the previous section, network veri-
fication is about in-field testing. In the prior
work on network verification two major areas
can be recognized. First of all, a lot of work has
been done on network errors: malfunctioning
routers, routers that drop out of the network,
links that are broken, error detection, and so on;
and recovery procedures for all these cases. We
assume the on-chip ÆTHEREAL network to be
very stable, so network errors are not considered
further.

The second major area of network verifica-
tion focuses on bandwidth bottleneck detection
and latency monitoring. This can be done either
actively or passively. Active monitoring meth-
ods involve probing the network with test pack-
ets, in order to get round-trip latency, peak
bandwidth, or available bandwidth. The prob-
lem with these methods is that they can intro-
duce significant amounts of additional traffic in
the network. On the Internet, this intrusiveness
of debug traffic can easily be reduced by tem-
porarily increasing the bandwidth with, for
example, additional routers. Since this solution
cannot be applied on an SOC, the intrusiveness
cannot be removed easily, and thus complicates
SOC debug.

Passive measurement methods execute per-
formance measurements using special probe
devices or probes added to routers, switches, or
hosts. The measured data is cached; this cached

Silicon verification

involves checking

whether the

hardware design

is correct, assuming

it has been

manufactured

correctly. This

process is often

referred to as

silicon debug, as

the goal is to try

to find any

remaining design

errors that might

have slipped

through the

pre-silicon

verification stages.

IEEE Communications Magazine • September 2003 79

data can be either streamed to a central entity or
shared within a local domain. How to best apply
the lessons learned in computer networks to the
ÆTHEREAL NOCs is an ongoing research activi-
ty within Philips.

VERIFYING THE NOC
In addition to using the standard verification
techniques, an ÆTHEREAL NOC is verified using
special events that have been defined inside the
network blocks. With these events, conditions
such as incorrect configuration, incorrect topolo-
gy (e.g., two ports of the router are switched),
incorrect initialization, and reset errors can be
detected and used to verify applications.

Examples of events in the NI block are con-
nection opened/closed, data for a connection
received, data sent on a connection, and a cer-
tain data value appeared on a connection.
Examples of events in the router block are
data with a certain path is passing, data in a
queue for more than n cycles, incorrect path,
and conflicts in reservation. These events can
be sent either actively (self-initiating) or pas-
sively (polling) Within ÆTHEREAL, the
approach is to temporarily log events on-chip
with a local timestamp, and later stream them
off-chip for analysis. Special debugger software
uses the event information to graphically rep-
resent the state of the network at different lev-
els of detail . This provides the user of the
debugger software with very useful debug data.
Furthermore, the codebook approach [15] is
applied to the off-chip data to correlate the
generated events and isolate the root cause of
a particular problem.

When deciding to use the on-chip network
for transport events, a choice has to be made to
make the implementation either completely
independent of the NOC or to overdimension
the existing network. Note that the latter
approach leads to intrusiveness.

VERIFYING AN SOC THROUGH ITS NOC
Verification of the SOC contains two parts: veri-
fication of the NOC, described in the previous
section, and verification of the cores. In general,
access to the cores is a problem. However, when
using an NOC this access is simplified. In Fig. 6
one of the possibilities is shown.

A processing block P3 receives data from

another processing block P1 via the NOC. If, in
the verification of P3, a situation has to be
reproduced, it is necessary to also repeat P1
and its predecessors. If data from P1 to P3 is
first tapped off and streamed to memory M2,
P1 need not be executed during the repetition
of P3 in following iterations. When, on replay,
P3 repeats its fault, the data can easily be
streamed off-chip and compared to the behav-
ior of, for example, an FPGA model or a simu-
lation model. Note that the exact timing of the
data is lost during replay. This might lead to
the disappearance of the problem or the intro-
duction of a new problem. Nevertheless, the
disappearance of the problem hints at a timing-
related problem, which also aids in debugging
the application. When the timing, captured at
P3, is enforced via specific reservations in the
NOC, it is even possible to eliminate this time
intrusiveness. Experiments with varying timing
behavior of the input data can also help to
locate the problem.

Beside transporting functional data to a core
via the NOC, it is also possible to transport
other data. By recording the entire state of a
core in embedded memory, it is possible to
quickly restore this state via the NOC prior to
replay.

In this section we have shown that the NOC
introduces new options for locating a problem
during verification of the cores. This type of
verification is done only once per SOC design.
In contrast, verification of an application that
is mapped onto an SOC has to be conducted
more often, and this is the topic of the next
section.

APPLICATION VERIFICATION
Although the basic functionality of the SOC is
verified using techniques from the previous sec-
tions, this by no means implies that the hard-
ware and application software together will also
run correctly. Examples of problems we might
detect only after we have mapped an application
onto the SOC are:
• A processing core that writes into another

core’s memory space and thereby corrupts
its operation

• An incompatible format used to exchange
data between cores (e.g., endianess)

� Figure 6. Recording a stream for easy replay in the receiving processing unit: a) record events; b) replay
events.

P1 P2 M1 P3 M2

NI1 NI2 NI4NI3

R1 R3R2

(a) (b)

NI5

P1 P2 M1 P3 M2

NI1 NI2 NI4NI3

R1 R3R2

NI5

Besides transport-

ing functional

data to a core via

the NOC, it is also

possible to

transport other

data. By recording

the entire state of

a core in an

embedded

memory, it is

possible to quickly

restore this state

via the NOC prior

to replay.

IEEE Communications Magazine • September 200380

• Deadlines not met because constraints were
not passed to the network
These bugs will become more difficult to

find due to the increasing complexity of the
SOC itself. Many cores run in parallel, and the
status of the system can no longer be related to
a single program counter or traffic on a single
bus. It is even possible that some of the cores
execute multithreaded software, and these
cores continue with those processes that can
still consume or produce data. Lack of band-
width (e.g., due to network congestion or func-
tional processing spread) can cause an
application to execute the processes in a differ-
ent order. Some of the observed problems can
be caused by use of the NOC. However, there
are also new opportunities for verifying the
complete application using the NOC (e.g.,
breakpoints, spying functional signals, and per-
formance analysis).

Breakpoints in the network can help analyze
the state of the SOC in more detail, as break-
points can stop (part of) the application by
either gating (some of) the on-chip clocks or
putting (part of) the cores in an idle mode. Once
(part of) the application is stopped, the on-chip
communication architecture can be used to
access important registers and memories.
Although in principle the ÆTHEREAL NOC has
a global notion of time and can therefore be
stopped in relation to this global clock, this is by
no means trivial for NOCs in general. Further-
more, stopping an SOC is even more complex
than stopping an NOC, as all cores can run at
their own frequency. This is a topic of ongoing
research within Philips.

Spying functional data in a local area net-
work can be done relatively easy by plugging a
network analyzer on that link. This network ana-
lyzer will monitor all data and process it into
required debug or performance information. In
an NOC, it is not possible to plug in a similar
network analyzer because the data wires of the
link are extremely difficult to probe. The two
most important aspects we are interested in
regarding a link are the possible congestion on
the link, and the data from one of the connec-
tions that traverses the link. To achieve the first
aspect, it is possible to add congestion monitors
to the hardware design that can generate break-
point events. To solve the second aspect, the NI
can be configured such that the data is duplicat-
ed and sent along a separate debug channel. To
reduce the tremendous amount of data generat-
ed during this functional spying, watchpoints can
be introduced. Such a watchpoint only gives an
indication if a certain value has passed and
should be generated inside the NI because, in
general, the routers have no knowledge about
the data.

Performance analysis — Data and commu-
nication statistics, such as link utilization,
latency, and jitter, are important when debug-
ging an application. One way to gather statis-
tics on latency is to let both the sending and
receiving NI blocks generate a event. From the
sending NI, the moment at w hich the data is
written in its queue is valuable data. At the
receiving NI, this is either the time it arrives,
or the time the core retrieves it. The person

debugging the application should decide which
one is most useful. This technique is also very
common in the verification of networks, as
described earlier.

The latter two debug techniques lead to real-
time generated data, which can be viewed as net-
work events. These events are in addition to the
network events defined earlier, and can be han-
dled similarly.

CONCLUSIONS AND FUTURE WORK
Today and in the future, SOCs will be used to
implement high-performance networking appli-
cations. One of the issues to be addressed for
these SOCs is their on-chip data communication.
In this article we presented the Philips ÆTHERE-
AL NOC for future-generation SOCs.

With the integration of a network on an SOC
come additional test and verification require-
ments. Fortunately we can still use the wealth of
test and verification methods that have already
been successfully used in the past for either
other existing SOCs and the much larger com-
munication networks, such as LANs or the Inter-
net. The integrated network also provides new
and complementary possibilities to test and veri-
fy the SOC, and with it the SOC application. As
shown in this article, there are plenty of options
for meeting a particular SOC’s test and verifica-
tion requirements.

In the initial phase of the ÆTHEREAL pro-
ject, key elements of future investigation were
defined, which include the challenge of stop-
ping an SOC when cores run on their own fre-
quency. Due to dynamic runtime effects
(voltage drops, crosstalk, alpha particles, etc.),
and their growing size NOCs evolve to comput-
er networks. How to apply the verification
lessons learned in computer networks to NOCs
in a cost-effective way is another interesting
(research) challenge that is currently under
investigation within Philips.

In the future, an NOC will most likely
become a similar commodity as its bigger broth-
er the Internet, and no doubt equally successful.

ACKNOWLEDGMENTS
The authors like to thank their colleagues Har-
ald Vranken and Jos Huisken and the anony-
mous reviewers for their valuable feedback on
an early draft of this article.

REFERENCES
[1] D. Wingard, “MicroNetworks-Based Integration for

SOCs,” Design Automation Conf., 2001.
[2] W. J. Dally and B. Towles, “Route Packets, Not Wires:

On-Chip Interconnection Networks,” Design Automa-
tion Conf., June 2001, pp. 684–89.

[3] L. Benini and G. De Micheli, “Networks on Chips: A
New SoC Paradigm,” IEEE Comp., vol. 35, no. 1, 2002,
pp. 70–80.

[4] D. Whelihan and H. Schmit, “Memory Optimization in
Single Chip Network Switch Fabrics,” Design Automa-
tion Conf., June 2002.

[5] HyperChip Inc. Cell-Based Switch Fabric Architecture,
World International Property Organization patent no.
WO 02/098066 A2, Dec. 2002.

[6] F. Karim et al., “On-Chip Communication Architecture
for OC-768 Network Processors,” Design Automation
Conf., June 2001.

[7] A. Jantsch and H. Tenhunen, Eds., Networks on Chip,
Kluwer, 2003.

Today and in the

future, SOCs will

be used to

implement high-

performance

networking

applications. One

of the issues to

be addressed for

these SOCs is

their on-chip data

communication.

IEEE Communications Magazine • September 2003 81

[8] E. Rijpkema et al., “Trade Offs in the Design of a Router
with Both Guaranteed and Best-effort Services for Net-
works on Chip,” Proc. Design Automation and Test
Conf. in Europe, Mar. 2003.

[9] H. Zhang, “Service Disciplines for Guaranteed Perfor-
mance Service in Packet-switching Networks,” Proc.
IEEE, vol. 83, no. 10, Oct. 1995, pp. 1374–96.

[10] IEEE P1500: http://grouper.ieee.org/groups/1500/
[11] H. Vranken, F. Meister, and H.-J. Wunderlich, “Com-

bining Deterministic Logic Bist with Test Point Inser-
tion,” Proc Euro. Test Wksp., May 2002, pp. 105–10.

[12] D. D. Josephson, S. Poehlmann, and V. Govan, “Debug
Methodology for the McKinley Processor,” Proc. IEEE
Int’l. Test Conf., Baltimore, MD, Oct. 2001, pp. 451–60.

[13] H. Hao and R. Avra, “Structured Design-for-Debug —
the SuperSPARC-II Methodology and Implementation,”
Proc. IEEE Int’l. Test Conf., Washington, DC, Oct. 1995,
pp. 175–83.

[14] B. Vermeulen, T. Waayers, and S. Goel, “Core-based
Scan Architecture for Silicon Debug,” Proc. IEEE Int’l.
Test Conf., Baltimore, MD, Oct. 2002, pp. 638–47.

[15] S. A. Yemini et al., “High Speed and Robust Event Cor-
relation,” IEEE Commun. Mag., May 1996, pp. 82–90.

BIOGRAPHIES
BART VERMEULEN (bart.vermeulen@philips.com) is senior sci-
entist at Philips Research Laboratories, Eindhoven, The
Netherlands. He received his M.Sc. degree in electrical engi-
neering with honors from Eindhoven University of Technol-

ogy, The Netherlands, in 1997. His research interests
include the test and debug issues of large digital system
chips.

JOHN DIELISSEN (John.Dielissen@philips.com) is a research
scientist at Philips Research Laboratories, Eindhoven, The
Netherlands. He received his M.Sc. degree in electrical engi-
neering with honors from Eindhoven University of Technol-
ogy, The Netherlands, in 2000. His research interests
include on-chip communication in large digital system
chips, with a current emphasis on networks on chip.

KEES GOOSSENS (Kees.Goossens@philips.com) received his
Ph.D. from the University of Edinburgh in 1993 on hard-
ware verification using embeddings of formal semantics of
hardware description languages in proof systems. At
Philips Research since 1995, he has worked on networks on
chip for consumer electronics, where real-time perfor-
mance, predictability, and costs are major constraints.

CALIN CIORDAS (C.Ciordas@tue.nl) is a junior researcher at
the Technical University of Eindhoven (TUE), Design
Methodology for Electronic Systems group. He obtained an
M.Sc. in computer science from Technical University of Cluj
Napoca, Romania, and a post-master technological design-
er degree in information and communication technology
from Technical University of Eindhoven, Netherlands. His
current research interest includes debugging and monitor-
ing of on-chip multiprocessor systems and networks on
chip.

In the future, a

NOC will most

likely become a

similar commodity

as its bigger

brother the

Internet, and no

doubt equally

successful.

