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Abstract. The key issue in the design of Systems-on-a-Chip (SoC) is to trade-off
efficiency against flexibility, and time to market versus cost. Current deep sub-
micron processing technologies enable integration of multiple software programmable
processors (e.g. CPUs, DSPs) and dedicated hardware components into a single cost-
efficient IC. Our top-down design methodology with various abstraction levels helps
designing these ICs in a reasonable amount of time. This methodology starts with a
high-level executable specification, and converges towards a silicon implementation.
A major task in the design process is to ensure that all components (hardware
and software) communicate with each other correctly. In this article, we tackle this
problem in the context of the signal processing domain in two ways: we propose a
modular, flexible, and scalable heterogeneous multi-processor architecture template
based on distributed shared memory, and we present an efficient and transparent
protocol for communication and (re)configuration. The protocol implementations
have been incorporated in libraries, which allows quick traversal of the various
abstraction levels, so enabling incremental design. The design decisions to be taken
at each abstraction level are evaluated by means of (co-)simulation. Prototyping
is used too, to verify the system’s functional correctness. The effectiveness of our
approach is illustrated by a design case of a multi-standard video and image codec.

Keywords: Embedded systems, heterogeneous multi-processor architectures, dis-
tributed shared memory, Kahn process networks, design methodology, communica-
tion, synchronisation protocol, signal processing applications.
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1. Introduction

Embedded systems can be classified into two domains: reactive/control
and signal processing. A key aspect of the control domain is that the
time to react is critical for proper behaviour of the system. In this
type of systems, there is limited availability of task level parallelism
(TLP), and performance improvement is mainly realised by using newer
technologies which allows for higher clock rates, the use of more deeply
pipelined circuits, and the exploitation of instruction level parallelism
(ILP) as in VLIW (Very Long Instruction Word) and super-scalar pro-
cessors. Good examples of products in this domain are automotive and
hard-disk controllers.

In this article we are more concerned with the second domain: sig-
nal processing. The main issue here is the often enormous processing
demand and data bandwidth. Timing constraints are mainly related to
the prevention of buffer over-/under-flows, and in a lesser extent to the
required response times. The performance requirements for many prod-
ucts in this area are related to standards like MPEG, DVB, DAB, and
UMTS. Commercialisation calls for cost-efficient implementation of the
signal processing part of these products. However, because of evolving
standards and changing market requirements, the implementation also
requires flexibility and scalability. Dedicated hardware implementation
provide the performance required by signal processing applications but
they are not flexible. On the other hand, today’s technology permits
more programmable (flexible) solutions due to the increase in pro-
cessor performance. This allows for a new balance between efficiency,
flexibility and design time (time to market).

Using a single processor is not an option because the processing
performance required to implement signal processing applications (e.g.
GSM) is often beyond its capabilities [39]. Furthermore, the ILP avail-
able in such applications is limited and can be exploited to a certain
extent only. Further performance increase can only be achieved by ex-
ploiting the TLP. TLP is abundant in such applications because signal
processing applications often comprise different stages of operations,
which are performed on an endless stream of data in a pipelined fash-
ion. These stages have little dependencies with the others and can be
modelled as separate tasks. A single processor is unable to exploit this
property. Waiting for the next generation of CPUs or DSPs is not an op-
tion (see Figure 1), since the demand for signal processing performance
(in operations per second (OPS)) will also increase in time. The growing
gap between available generic processing performance (in instructions
per second (IPS)) and the requested signal processing performance can
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only be bridged by adding dedicated hardware to the processing system
for the computationally intensive parts.

Power consumption is another reason why signal processing is not
likely to be implemented completely in software on a generic processor.
Due to the required flexibility of CPUs and DSPs, the power consumed
in performing a specific signal processing function is two to three orders
of magnitude higher than when the same function is performed by
dedicated hardware.
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Figure 1. Required media processing performance and available (generic) processing
performance [39].

By having multiple processors in a single system, the available TLP
can be effectively exploited to achieve high performance. In order to
combine this with flexibility in a cost-effective way, we need to have a
heterogeneous mix of different processing modules so that each can be
tuned to its specific function. Therefore, we believe that signal process-
ing systems should be built as heterogeneous multi-processor systems: a
combination of programmable devices such as CPUs, DSPs and ASIPs
(Application-Specific Instruction-set Processors) for the more flexible
part of an application, and dedicated hardware for the heavier signal
processing kernels.

These heterogeneous systems are generally difficult to design. Since
there are multiple cores of different natures, the design space of such
systems is very large. Coordination of various different types of de-
vices is error prone and not trivial and, if it is poorly performed, the
whole system’s performance will deteriorate. An additional difficulty
comes from the complexity of the applications. We believe that three
solutions are needed to effectively overcome these problems: 1) a top-
down design methodology with various abstraction levels, which allows
the designer to focus on the right problems at each level, 2) a design
template to limit the design and modelling efforts through the reuse
of pre-defined modules, and 3) a protocol for cooperation and com-
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munication between autonomous tasks, which should be transparent
to the designer to ease the design process. These are the main topics
addressed in this article. The central entity in our approach is a CPU
which configures all the processing modules and their communication at
system start-up time and also performs some reconfiguration at run-
time, but the communication thereafter is independent of the CPU.
Therefore, the combination of our template and protocol is called C-
HEAP, which stands for CPU-controlled HEterogeneous Architectures
for signal Processing.

This article is organised as follows. We describe related work in
Section 2. Section 3 presents our design methodology. The target ar-
chitecture template is introduced in Section 4. The C-HEAP prim-
itives are divided into two categories: communication primitves and
(re)configuration primitives. We discuss the C-HEAP communication
primitves and its implementations in detail in Section 5. We do the
same for the (re)configuration primitives in Section 6. We validate our
design methodology and evaluate the efficiency of our protocol and
architecture template through a design case: a multi-standard video
and image codec. This design case is presented in Section 7. The article
ends with conclusions and future work in Section 8.

2. Related work

The first step in building a system is getting the specifications right.
Typically, specifications are textual documents with some (vague) re-
quirements, which may be unclear and prone to misinterpretation by
different designers. Rather, executable specifications are more concise
and can be used for validation. Hence, specifications are increasingly of-
ten written using programming languages (e.g. C) which usually express
sequential behaviour of an application. Concurrency in an application
can be made explicit when TLP can be expressed, which is inherent in
signal processing applications. A model of computation often used for
this purpose is Kahn Process Networks (KPN) [25]. In this model, the
application is decomposed into a number of parallel processes commu-
nicating via point-to-point uni-directional unbounded channels with
first-in-first-out (FIFO) behaviour. It is a deterministic, composable
and hierarchical model of computation. It separates communication and
computation parts of an application. This orthogonalisation is a basic
foundation for template (platform)-based design [27, 20, 40, 11, 45].
A special case of KPN called Dataflow Process Networks [30] has
also been used for modelling signal processing applications [29, 7, 13].
Dataflow Process Networks is more suitable for regular signal pro-

DA_main.tex; 26/06/2002; 15:58; p.4



C-HEAP: A Heterogeneous Multi-processor Architecture Template 5

cessing applications. However, for irregular signal processing applica-
tions (e.g. MPEG-x) KPN is preferred since it avoids explicit state
saves [18]. Because of the generality of KPN, which allows embedded
use of Dataflow Process Networks, we choose KPN as our model of
computation.

It has been reasoned in the literature that template-based design
is necessary for designing embedded systems to handle the complexity
of applications [27], to achieve the required performance with efficient
implementations [31, 5], to generate product families [43], to enable
reuse [11, 8], and to reduce time-to-market [20, 38]. A template pro-
vides a standard way of communication among the vast variety of
computational elements (e.g. processors, DSPs, ASIPs, dedicated hard-
ware) [45, 31, 5]. A template with a method for connecting processing
elements through some interconnection network (e.g. CoreConnect [3],
AMBA [1]) is not enough for multi-processor systems. Coordination
of processing devices in a systematic manner through the use of a
protocol which can take care of communication, (re)configuration etc.,
is becoming necessary [22].

Communication between processing elements is based on either mes-
sage passing or shared memory. Both communication principles need
a form of signalling to indicate the presence of data. With message
passing communication, this signalling is often a side effect of sending
data from one task to another. This means that inter-task data trans-
portation and synchronisation are combined in a single action. The
disadvantage of message passing protocols is that copies of data have
to be created, which requires extra time and memory. In shared memory
architectures, by separating synchronisation and data transportation,
copies of the FIFO buffer data need not be created. The data can stay
at the place where the FIFO is mapped in the memory and a task
can access that data after performing a synchronisation action (claim-
ing the data). Data transport in the simplest form can be load/store
instructions for a processor. However, synchronisation requires some at-
tention. In homogeneous shared-memory multi-processor architectures,
plenty of algorithms for scalable synchronisation exist (see [33]). In
this domain, one resource is shared by multiple tasks. This problem is
solved either by spin-lock or barrier algorithms, which require special
instructions (e.g. test_and _set, swap_with memory) or atomic read-
modify-write operations. It has the disadvantage that semaphores or
atomic operations are needed. This limits the system’s scalability and
retargetability. Therefore, solutions with atomic operations must be
avoided.
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We describe closely related work of Prophid [31], COSY [11, 12, 9,
10], CoWare [44, 45, 8] and TIMA laboratory [5, 32]. We will restrict
our discussion to the work in the signal-processing domain.

Prophid is a heterogeneous multi-processor architecture template.
This template distinguishes between control-oriented tasks and high
performance media processing tasks. A CPU connected to a central
bus is used for control-oriented tasks and possibly low to medium
performance signal-processing tasks. A number of application-specific
processors implement high performance media processing tasks. These
processors are connected to a reconfigurable high-throughput commu-
nication network to meet the high communication bandwidth require-
ments. Hardware FIFO buffers are placed between the communica-
tion network and the inputs and outputs of the application-specific
processors to efficiently implement stream-based communication.

The COSY methodology provides a gradual path for communication
refinement in a top-down fashion for a given platform and a communi-
cation protocol. The main goal of the COSY methodology is to perform
design space exploration of a system at a high abstraction level. In order
to achieve this, the methodology provides a mechanism for modelling
communication interfaces at a high level of abstraction (including the
behaviour of selected protocol) with various parameters, e.g. delay of
execution of the protocol itself. The COSY methodology uses a message
passing communication protocol with read and write primitives.

CoWare [44] reports a methodology along with an architecture tem-
plate (called Symphony [45, 8]). In the CoWare methodology, signal-
processing kernels are specified as functions, which are called from the
main software task using remote procedure calls. At the time of imple-
mentation, these kernels can be bound to hardware accelerators. The
interfaces between the (main) program and the signal processing kernels
are automatically generated. In Symphony, the physical architecture
is abstracted as an interconnection of “Processor Component Units”
with point-to-point communication channels. Communication on the
channels is realised with the rendez-vous protocol (using send/receive
primitives), in which both sender and receiver must be ready (i.e.
implicite synchronisation) before data transfer can take place. Each
component has ports through which data communication can be per-
formed. FIFO buffers of channels can be mapped onto a hardware FIFO
component between input and output ports. It allows shared memory
among different processing units with multi-port memories.

The work done at the TIMA laboratory resulted in a generic archi-
tecture model [5] intended for the design of application-specific multi-
processor Systems-on-a-Chip. This model is modular, flexible, scalable
and generic enough to be able to tackle a broad range of application
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domains. It also allows for systematic design of multi-processor systems.
Communication among the computation units is handled through com-
munication co-processors. An architecture instance can be generated
by customising the various parameters such as the number of CPUs
and the communication protocol for the communication co-processors.
In [32], an automatic architecture generation flow is presented based on
this model, starting with a macro-architecture level specification (that
is, a view in which modules with wrappers are connected to each other
via channels). At this level, allocation of processors and mapping of
behaviour and communication (e.g. protocol) have already been done.

COSY and Prophid use the Kahn Process Network as the model
of computation, CoWare uses a similar data model with processes and
channels. However, the work of TIMA laboratory leaves this choice
open. As explained above, we also make this choice clear so as to be
able to use KPN as the model of computation. The Prophid architec-
ture template uses a Time-Space-Time (TST) switch matrix network.
A TST network offers very high communication bandwidth and per-
formance. It suits regular data processing applications, but it is less
flexible. It is not suitable for our applications as they perform irregular
data processing. CoWare has a point-to-point automatically generated
physical interconnection network. It offers guaranteed network access
but the interconnection network may explode as the number of ports
increases. The COSY methodology and the work of the TIMA labo-
ratory leave open the choice of the interconnect network. This gives
the system designer the freedom to choose one for its application. In
addition to these ideas, we define some rules to facilitate the definition
of a protocol for communication and (re)configuration. Note that the
definition of protocols and the selection of an architecture template will
be usually interwined [22].

The other important part of the template is the mapping of FIFO
buffers. Prophid and CoWare implement these FIFO buffers as hard-
ware components, which are not flexible. A FIFO buffer mapped onto
a memory is flexible since the element size and the length of the FIFO
can be changed even after final silicon realisation. CoWare allows a
shared memory in the architecture template, but it does not define
how shared memory can be used to map channel FIFO buffers. COSY
provides this mapping. As we target flexible systems, we advocate the
mapping of the FIFO buffers onto memory.

CoWare and COSY use communication protocols based on message
passing which has the drawback of having to copy data. Prophid, which
also uses the message passing protocol, circumvents this drawback by
using a very high bandwidth interconnection network (TST network)
instead of a shared memory with communication buffers. The archi-
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tecture developed by the TIMA laboratory is very generic and does
not specify any communication protocols. We propose a synchronisa-
tion method which supports true TLP for an unspecified number of
tasks without the need for semaphores or atomic instructions. Further-
more, the proposed synchronisation is transparent so that hardware
and software communicate in an identical way. Similar to CoWare, we
also provide library-based interface synthesis only for synchronisation;
existing approaches for data transport (load/store of data) can be used.

3. Design methodology

Due to the ever increasing complexity of SoC designs, there is a need for
a structured approach in the design process. Hierarchy in this process
helps to guide the designer in taking the design decisions required to
arrive at an implementation. In this way, few but larger decisions can
be taken at an early stage in the design process and the more detailed
decisions (which are as important) at a later stage. A design method-
ology should enable a designer to make all the necessary decisions at
each stage in the SoC design process. All these decisions have to be
based on quantitative data obtained in an analysis of the application.
Note that the number of decisions to be taken by a designer can be
reduced by using an architecture template.

Our design methodology corresponds to this top-down approach, i.e.
the design process starts with an abstract description of the applica-
tion/algorithm, and gradually arrives at a detailed implementation [19].
This design methodology is shown in Figure 2. The designer starts with
a selected algorithm/application and analyses it. The next step is the
partitioning of the application, and the mapping onto an instance of the
architecture template. The performance and functional correctness of
this set-up are assessed by means of simulation. If the performance re-
quirements are not met then different choices can be made (sometimes)
for the algorithms, the partitioning, the architecture template instance
or the mapping. Then the performance is evaluated again. This design
space exploration step is iterative because these steps may have to be
repeated a few times before the results are satisfactory.

If the combination of partitioning, architecture and mapping yields
results that meet the design requirements, the system can be imple-
mented. This step entails compiling the software parts of the applica-
tion on the selected processor(s), and designing and implementing the
hardware parts. We propose to break this large step into smaller steps,
in which the critical parts of the application, e.g. the communication
network, are implemented in detail first, to reduce design effort and
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| Application specification |

Performance analysis

Architecture instantiation,
partitioning, mapping

Performance analysis based on
simulation / prototyping

| HW/SW implementation |

Final performance analysis
(simulation / prototyping)

| Final silicon implementation |

Figure 2. Design methodology

simulation time. This is again an iterative step which results in a bit-
true and cycle-true design description of the system. This final model
behaves in exactly the same way as the final silicon realisation.

From this level on, prototyping can be used as an alternative to simu-
lation. Prototyping allows the use of the targeted embedded processors
instead of instruction set simulators, and Field Programmable Gate
Array (FPGA) based implementations for hardware blocks instead of
VHDL/Verilog simulators. Therefore, prototyping speeds up the ex-
ecution of the modelled system. It offers an application (embedded)
software development environment and the possibility to build demon-
strators for customer surveys. However, note that the communication
performance can not be easily evaluated because the communication
infrastructure of the prototyping platform (e.g. PCI bus) may differ
from the communication infrastructure of the targeted system (e.g.
AHB bus).

We can ease the decision making in the design process by defining
several abstraction levels. In this way, the designer can focus on the
relevant problems at each level, without being confused by unnec-
essary details. For example, if the communication performance of a
functional partition has to be evaluated then a designer may not want
to spend time on implementation details such as the exact implemen-
tation of interrupt service routines on the targeted processor, or the
implementation of a function as a state machine in hardware.

We identify the following levels of abstraction:

a) algorithmic specification level (single-threaded)

b) partitioned algorithmic specification level (concurrent tasks, multi-
threaded)
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¢) cycle-true communication level; bit- and cycle-true models for the
communication and abstract functional models for the processing
tasks

d) cycle-true embedded software level; bit- and cycle-true models for
the communication, bit- and cycle-true functional models for the
processing tasks which are implemented in software, behavioural
models for the processing tasks which will be implemented in
hardware

e) partially implemented cycle-true hardware level; bit- and cycle-
true models for the communication, bit- and cycle-true functional
models for the processing tasks which will be implemented in soft-
ware or hardware, combined with behavioural models for tasks still
to be implemented in hardware

f) bit-true and cycle-true level; bit- and cycle-true models for the
communication, bit- and cycle-true functional models for the pro-
cessing tasks to be implemented in software or hardware

These abstraction levels are depicted in Figure 3. The starting point
of the design is an executable functional specification of an application
(Figure 3(a)), which describes the behaviour in the C language. This
specification can be simulated to check the functional correctness. At
this level the simulation speed is high since no timing and architecture
details are considered. Profiling techniques can be used to estimate the
computational load of different functions. This information can be used
for functional partitioning of the application, and provides input to the
hardware-software mapping step. After partitioning, the application is
represented as a Kahn process network (see Figure 3(b)), with tasks
that perform the processing functions and channels through which data
are communicated. Simulation at this level is multi-threaded (running
on a multi-threading environment e.g. PAMELA [4]), and is used to
check the functional correctness of the application after partitioning.

The communication bandwidth is often a major bottleneck for media
processing applications mapped onto multi-processor systems [40, 31].
To check the feasibility of the current partition, we introduce an ab-
straction level in which communication is simulated in a bit- and cycle-
true manner while the functions may be still untimed (see Figure 3(c)).
Note that the functional C models used at this level are the same as
those used in the previous step, only now they are executing as UNIX
processes. This has the advantage that the simulations are performed
with realistic data and include all data dependencies. Computation
delays can be inserted in the functional models to mimic their real
(partial) timed behaviour. In this step, template-based design helps
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a) Algorithmic level
“ Partitioned algorithmic level:
b) algorithm partitioned
. ' in concurrent tasks

Cycle-true communication level:
cycle true communication;
) behavioural models for tasks
Memory|
[ |
!

Cycle-true embedded software level:
d) cycle true + bit true software;
behavioural hardware models
L_FI []
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e) Partially implemented, cycle-true
hardware level:
cycle-true + bit-true software;
Memory| behavioural + cycle true hardware
CPU q HW| models

f) Bit-true, cycle-true level:
Bit-true + cycle-true software
and hardware models

Memory|
CPU HW| HW|
!

Figure 3. Levels of abstraction for incremental performance evaluation

since models of communication network and/or memory are available.
Simulations are performed with these models to obtain an initial es-
timate of the performance, bandwidth utilisation and latency of the
critical parts. Prototyping at this level of abstraction, as an alternative
to simulation, is not yet useful as only little speed-up can be gained
for functional parts of applications. Furthermore, the communication
network of the prototype should match the communication network of
the template, which is often not the case.

The mapping of functions on hardware or software is the next step
in the design methodology. For the software tasks, the same C code
as used in the levels above is compiled for the target processors. They
can then run on cycle-true simulation models of the processors. For
the tasks that are to be implemented in hardware, we still keep them
as abstract functional models. This has the advantage that with little
effort (cross-compilation), the more unpredictable (e.g. due to cache
behaviour) software tasks which may have a major impact on the
overall system performance, can be evaluated before any effort is put
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into the hardware design. This set-up is shown in Figure 3(d). At this
level prototyping becomes an interesting alternative since software can
be executed on the targeted processors rather than on instruction-set
simulators.

Once this type of performance analysis has resulted in sufficient
confidence that the system can be implemented within the specifica-
tion limits, further refinements have to be performed. All the hard-
ware accelerator units can be converted incrementally into bit-true
and cycle-true models (C or VHDL) (see Figure 3(e)). These models
can be generated from the C based description by architecture level
synthesis tools, e.g. A|RT [2]. The system’s performance and functional
correctness can be evaluated through multi-level co-simulations or by
prototyping. Prototyping becomes more important since simulating the
detailed hardware models in VHDL /Verilog is rather slow in compar-
ison with executing the function on an FPGA board. The latencies
of the implemented hardware accelerators could be used to tune the
delay annotation in the abstract models to further refine the simulation
accuracy at higher abstraction levels. The end result of all these steps
is a cycle-true model for the entire system (see Figure 3(f)).

Essential for this design methodology are smooth and seamless tran-
sitions between all the abstraction levels. For this reason, our design
flow is completely C based. Furthermore, it is necessary to have simple-
to-use, well-defined communication primitives [20, 18]. That reduces
the amount of work required for repartitioning. By using the same
primitives on all levels of abstraction, a uniform view on communication
is guaranteed, and no modifications are required in the processes at
transitions to a different abstraction level. To enable such smooth tran-
sitions, the primitives should be implemented in libraries for various
types of components (e.g. MIPS, ARM, dedicated hardware, ASIPs).
When a task moves to a different abstraction level only the different
library has to be linked with that task. Note that keeping part of the
implementation of primitives fixed and common makes seamless inter-
action at all abstraction levels and between all types of devices possible.
This allows easy shifting of tasks between hardware and software, or
between timed and untimed implementations.

4. Architecture template
One of the solutions for dealing with the complexity of embedded sys-
tem design is the use of architecture templates. The use of architecture

templates can drastically speed up the design process and reduce the
development costs for a number of reasons:
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— By fixing a number of aspects in the target architecture (e.g. the
memory architecture), the designer can concentrate on the com-
plexity of the application itself, and hence spend his/her time more
effectively.

— Reuse of IP blocks is natural, and can be achieved by sharing com-
ponents that match the template, both among different products
and across different product generations [20]. Therefore, the design
of product families is facilitated.

— Various models, libraries and tools can be supported for a tem-
plate.

This section presents the architecture template that we use for the
design of embedded signal processing systems. The template consists
of multiple processing devices, and is therefore a multiple instruction
multiple data (MIMD) type of architecture. In such a multi-processor
system, each task can run on a different processor, hence effectively ex-
ploiting the TLP available in the application. To save silicon area, mul-
tiple tasks may be mapped on one processing device (multi-tasking). As
the processing devices are of different types (e.g. CPU/DSP/ASIP/ASIC),
we use the term heterogeneous multi-processor architecture. The het-
erogeneity of the architecture allows us to achieve an optimum balance
between performance, power consumption, flexibility and efficiency.

For high performance data processing, the devices need to have
a high bandwidth to memory. If they have to access this memory
via a shared interconnection network, then the network quickly be-
comes a bottleneck. Therefore, we choose to distribute memory over
the different processing devices. This provides higher bandwidth with
lower latency, which results in a higher performance at a lower power
consumption [41, 16, 15, 34, 35]. By making the memories part of a
global memory map, they become accessible to other processing devices
as well (i.e. Distributed Shared Memory). This makes these memories
suitable for mapping communication buffers to. Communication buffers
are needed to decouple the different tasks to achieve a high degree of
parallelism, especially for irregular data processing. Otherwise, due to
the differences between the tasks (e.g. latency, data access patterns),
processing capacity is wasted in the time spent waiting for data (idle
time). By mapping buffers onto shared memory, a producer of data
can simply write into a communication buffer, and a consumer can read
from the same buffer some time later. Because of the distributed nature
of the memory, the access time of a data element depends on its physical
location in memory and is not uniform. Therefore, this architecture is
called a Non Uniform Memory Access architecture (NUMA) [23]. Note
that pieces of memory may also be kept private to certain processing
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devices (e.g. scratch pad purposes), which are not visible in the global
memory map.

The C-HEAP architecture template is depicted in Figure 4. The dif-
ferent processing devices are connected by an interconnection network.
The interconnection network (e.g. busses, switch matrix) can be freely
chosen by the designer. This network must be address aware, and the
data transactions must be completed in order (for the synchronisation
signalling required in our protocol, see Section 5). Low latency is a
desired feature of the network, in order to reduce the protocol execution
delay. We want to have a scalable architecture to be able to cope with
the increasing complexity of applications. This means that it must be
possible to extend the network easily, so that more processing and
memory modules can be plugged into the architecture to enhance the
system’s functionality and performance, without the risk of insufficient
communication bandwidth. By selecting and configuring the appropri-
ate processing cores and interconnect, an instance of the architecture
template is created.

Interconnection Network

H i

MEMORY
(interface)

Peripheral

=
Figure 4. C-HEAP architecture template

In general, multi-processor systems are much harder to program
than uni-processor systems. However, it is not difficult for the signal
processing application domain because these applications can be ex-
pressed in a simple programming model like KPN. Section 5). One of
the difficulties here is cache coherence: a processor might have stale data
in its cache when it wants to read data recently written by a task on
another processor. There are two ways of dealing with this issue: 1) by
explicitly invalidating the cache lines or reading from uncached address
space in software, and 2) by adding hardware cache coherence support.
Explicitly invalidating the caches is in the general case awkward for
the programmer, since he/she has to keep track of which variables are
shared and might be invalid. On the other hand, hardware support
may be complex to implement for larger interconnection networks. For
signal processing applications, however, all shared data are explicitly
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communicated, which makes invalidating the proper cache lines rather
simple.

5. The C-HEAP communication protocol

Our architecture template consists of several processing devices of dif-
ferent natures. Since they all operate in the same application, they
need to communicate with each other. If each block communicates in
a unique (i.e. hardware specific) way, it is very difficult and time-
consuming to build a full application. Once a functionally working
implementation has been made, it is almost impossible to tune the
implementation to meet the requirements, due to all the details of the
communication. By standardising the communication in a transparent
way (i.e. independent of the processing device), it is much easier to
construct a complex system and to tune the implementation to meet
the requirements.

To support the different abstraction levels defined in our design
methodology (see Section 3), an implementation of the communication
protocol is needed at each level. Because the protocol has been stan-
dardised, library implementations can be made for each abstraction
level in our design flow. In this way, we can easily iterate on different
implementations during the design, at all levels of abstraction. This also
facilitates multi-level co-simulation, necessary to assess the viability of
an implementation in a reasonable time. For ease of use, a well-defined
set of primitives is required to hide the implementation of this protocol.

Section 5.1 describes the C-HEAP communication protocol. In Sec-
tion 5.2, the different implementations of this protocol will be pre-
sented.

5.1. COMMUNICATION PROTOCOL

One approach for controlling the data-flow in MIMD architectures, such
as the template presented in Section 4, is to have a main processor
controlling the other processing devices. In this section we call this set-
up a co-processor architecture. Here the co-processors do not operate
autonomously, but are controlled as slaves by the main processor. In
order to control the co-processors, the main processor either polls the
status of the co-processors or the co-processors themselves notify (in-
terrupt) the main processor when their task is finished. In order not
to overload the main processor, the interrupt rate should be low. This
can be accomplished by using (very) large grain synchronisation, for
example, in a video context, synchronising on a field or a frame basis.
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Large-grain synchronisation requires large buffers to store the data to
be communicated, which due to their size have to reside in off-chip
memory. Off-chip memory bandwidth is expensive and power consum-
ing, and is already a major bottleneck in systems. This bottleneck can
be alleviated by ensuring that the data remains on chip. Since the
amount of on-chip memory is limited and quite often already dominant
in cost (area), we should look for ways of decreasing the on-chip buffer
size. One way of accomplishing this is to reduce the synchronisation
grain size. However, in a co-processor architecture, this would lead to
unacceptably high interrupt rates for the main processor.

Therefore, we propose a different approach in which the processing
devices are autonomous with respect to synchronisation and do not
require service from a main processor [36]. This implies that each pro-
cessing device should be able to initiate communication with any other
device, hence the communication protocol must have a distributed
implementation. We call this kind of architecture a multi-processor
architecture. With this approach, we can go to a smaller grain of
synchronisation, which allows smaller buffer sizes, and hence on-chip
communication. For example, in a video context, we can synchronise
on a line or block basis.

Our application specification is based on Kahn process networks [25]
(see Figure 5). In this article, we refer to these processes as tasks. In
this model, when a task wants to read from a channel and no data is
available, the task will block. However, write actions are non-blocking.
In our model, FIFOs are bounded since we are addressing efficient imple-
mentation of the function and not only specification. This means that a
task will also block when it wants to write to a channel if the associated
FIFO is full. In the remainder of this article we will refer to this model
as a process network or task graph. The synchronisation takes place
on a per-token basis. While a token is the unit of synchronisation, the
amount of data associated with a token can vary. However, the size of
a token is fixed per channel, statically.

Figure 5. Example of a Kahn process network. The spheres represent the processes
and the arrows represent the communication channels

The communication protocol we describe involves the realisation of

the FIFO-based communication between the tasks, and does not refer
to low-level protocols, e.g. bus protocols. Communication in our case
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is divided into 1) synchronisation, and 2) data transportation. This is
done because in a shared memory architecture no copying of data is
required and only synchronisation primitives are needed. For efficiency
reasons, all communication buffer memory is allocated at set-up and
is reused during operation. Therefore, we need primitives to claim and
release buffer memory space. Since we communicate tokens, these prim-
itives operate on a per-token basis. On the data producing side we want
to claim empty token buffers and release full buffers. On the consum-
ing side we want to claim filled token buffers and release empty ones.
Claiming a token buffer is blocking, i.e. when no buffer is available the
task blocks. Releasing is non-blocking. The synchronisation primitives
are listed in Table 1.

Table I. Synchronisation primitives

Primitive Description

claim_space Claims an empty token buffer (blocking)
release data Releases a full token buffer (non-blocking)
claim_data Claims a full token buffer (blocking)

release_space  Releases an empty token buffer (non-blocking)

Figure 6 illustrates the use of the four primitives. The buffers are
visualised as train wagons and the channels as rail roads. The middle
task first has to acquire a full wagon at its input channel and an empty
wagon at its output channel. After the input data have been processed,
the emptied wagon is pushed back along the input channel and the
filled one along the output channel. The initial number of wagons on
the railroad determines how strongly the tasks are coupled. Only one
wagon means that the tasks have to be executed alternately, whereas
more than one wagon allows pipelining (parallel execution) of the tasks.

Pipelining
KL D
Sz —"

while (1) {
f = claim_data(in); <==
e = claim_space(out); <==
*e = process(*f)
release_space(in); <==
release_data(out); <==

No Pipelining

—

S~
Oa0,

—
D

—_—

Figure 6. Example of the use of the four synchronisation primitives
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In our implementation, it is allowed to claim (reserve) a number of
tokens and process them out of order before releasing them in order.
This means that multiple claim primitives can be called before the
corresponding tokens are released by release calls. Note that in that
case the number of buffers on the channel should be greater than or
equal to the number of consecutive claim calls, otherwise deadlock will
occur. The protocol is defined and implemented so that it is transparent
to the tasks, i.e. a task does not have to know whether the task it is
communicating with is implemented in hardware or software.

Certain channels may have a single producer and multiple consumers
(we call such channels which consist of multiple branches, multi-cast
channels). In this case, the producer sees only one channel and performs
synchronisation actions only on this channel. It will be transparent to
the producer whether it is communicating data through a uni-cast or a
multi-cast channel; this is taken care of by the protocol. At any given
time, the fullness of each branch may be completely different, and a
claim space call by the producer will block if any of the branches is
full.

5.2. IMPLEMENTATION OF THE COMMUNICATION PROTOCOL

Flexible implementation of the communication channel buffers is needed
to facilitate a protocol implementation that is transparent to hard-
ware and software. This transparency enables a task to communicate
with another task, irrespective of the implementation of that task. We
will explain how this can be achieved in Section 5.2.1. Section 5.2.2
describes a general implementation of the synchronisation primitives.
Different implementations for simulation and prototyping purposes will
be described in Sections 5.2.3 and 5.2.4. Some experimental results
demonstrating the efficiency of the communication protocol and its
implementation will be presented in Section 5.3.

5.2.1. Implementation of channel FIFO buffers

The reconfiguration manager (Section 6.1.1) is responsible for allocat-
ing space in shared memory during the configuration phase (start-up
time). The communication primitives used by the tasks control the
allocated space in a FIFO manner to implement a channel FIFO buffer.
This gives us the flexibility to tune the FIFO and token sizes for an
application even after a system’s silicon realisation. Furthermore, the
number of FIFOs and their interconnection structure can be changed in
order to map different applications on the same hardware. In order to
provide FIFO behaviour of a buffer, some administrative information
has to be maintained. The administrative information contains some
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static and dynamic values. Examples of static values are the size of a
token, a base address of the allocated memory, the maximum number
of tokens in a FIFO (maztokens), etc. The dynamic values are a read
counter (readc), a write counter (writec) and the number of filled or
empty tokens (ftokens/etokens). Two of the dynamic values are neces-
sary and sufficient to control the allocated space in a FIFO manner.
Thus, we have the following minimum pairs:

1. readc and ftokens or etokens.

2. writec and etokens or ftokens.

3. readc and writec.
Options 1 and 2 introduce a consistency problem. After producing data,
the producing task would increment ftokens. The data consuming task
is supposed to decrement the same variable after consuming data. Since
two concurrent tasks modify the same variable, access to that variable
needs to be atomic either by means of an atomic read-modify-write, or
by guarding through semaphores.
In addition to the consistency problem with the token field in options
1 and 2, there is another consistency problem related to the calculation
of the third dynamic value (readc, or writec). For example, in option
1, when readc is 13 and ftokens is 4, the derived value of writec is 17
(i.e. 13 + 4). After consuming one token the consumer task decrements
ftokens’ value atomically to 3. At this moment, the derived value of
writec (16, i.e. 13 + 3) is wrong since the value of readc has not yet
been incremented to make the value of writec correct (i.e. 17). Therefore
readc and ftokens have to be updated as an atomic unit to derive the
correct value of writec.

In option 3, a task increments only its own counter, i.e. a pro-
ducing task increments writec and a consuming task readc. Because
etokens/ftokens are derived from these values, a task never sees more
tokens than are available at any time. The counters are initialised to
zero and count modulo the maztokens value. To solve the ambiguity
problem (whether the FIFO is full or empty) that arises whenever
writec and readc are equal, we extend both values with an extra bit
(wrap flag). The wrap flag is initialised to zero, and toggled when the
corresponding counter reaches the maztokens value. If the counters are
equal and the wrap flags are different, then the FIFO is full, otherwise
(with identical wrap flags) the FIFO is empty. The wrap flag increases
the range of the counters to twice the size of the maximum number
of tokens in the FIFO, akin to the sliding window protocol for data
communication [42]. We choose option 3, since with this option no
consistency problem arises.

For a multi-cast channel, a copy of the administrative information
of the FIFO channel is made for each branch. The copied information

DA_main.tex; 26/06/2002; 15:58; p.19



20 Nieuwland, Kang, Gangwal, Sethuraman, Busd, Goossens, Peset Llopis and Lippens

remains in memory to facilitate reconfiguration and to ensure that
it remains compatible with the single branch channels. In the copied
information, the static values are the same for all branches, and initially
the same holds for the dynamic readc and writec counters. Although
some memory overhead is caused by duplicating channel administrative
information, the advantage is that synchronisation primitives can be
implemented in a more generic way. Note that in practice there will
be only few multi-cast channels, so the overhead of the copies will be
small.

5.2.2. General implementation of the synchronisation primitives

When a claim_ data call is executed and a full token is available in the
FIFO, a pointer to the token is returned. The token pointer is derived
from the readc value and some static values. Similar actions are per-
formed for a claim_space call. When the release_space (release_data)
primitive is called the readc (writec) counter is incremented. In the case
of multiple consumers, multiple values of readc have to be read during a
claim space call, and the incremented writec counter has to be written
to each branch during release_data.

In principle, a blocked task polls on (i.e. repeatedly reads) the counter
value until it gets through. This polling-based synchronisation scheme is
useful if the counter value is updated around the same time that a task
starts polling. However, polling is not always efficient since it increases
the bus load and power consumption. Alternatively, a blocked task
can be notified (e.g. by sending a signal) that the status of the FIFO
has been changed. We call this scheme interrupt-based synchronisation.
One should choose between polling-based and interrupt-based synchro-
nisation depending on the expected wait time with respect to the time
required to serve the wake-up signal.

The signalling scheme should be scalable because the whole system
should be scalable. We implemented the signalling in a memory mapped
fashion since it is scalable, and eliminates the need for a dedicated
interrupt network. To prevent the activated task from reading old data
the signal should not arrive before the data has reached its destination.
As long as no re-ordering is done in the interconnection network, the
memory mapped signals will follow the data and will not arrive too
early.

5.2.3. Simulated implementations

These implementations are intended for the simulation steps in the
design trajectory (Section 3). Depending on the abstraction level, these
implementations may be untimed, partially cycle-true or completely
cycle-true. The cycle-true model should behave the in same way as
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the final silicon realisation. The protocol has been implemented for
PAMELA, UNIX processes and as embedded software for DSP, MIPS
and ARM (running on an instruction-set simulator). In all implemen-
tations, the protocol uses (shared) memory reads and writes. The main
differences are in the implementation of the blocking and signalling
mechanism.

At the functional simulation level, the PAMELA [4] run-time library
is used. Here the blocking and signalling mechanisms are realised using
PAMELA semaphores. In order to simulate cycle-true communication
for untimed functions, a process interface block is used to connect an
untimed UNIX (possibly annotated with delay statements) process to
the communication network in the simulation environment. This block
translates the memory request calls from the UNIX processes into the
communication network accesses, which are simulated cycle-accurately.
Blocking is done by using UNIX socket communication mechanisms.
The process interface block also has at least one memory mapped
register to which other processes can write to implement signalling.
On the cycle-true level, a software and a hardware implementation of
the protocol are distinguished.

Software implementation & optimisation

The software implementation of the protocol is the same as the generic
implementation. We provide some optimisations to reduce the interrupt
overhead. With interrupt-based synchronisation, a task sends a signal
at every release synchronisation call. Whenever an interrupt signal
is received in a CPU or DSP, an interrupt service routine is called.
However, a task does not need these signals if it is not blocked, so
the overhead of executing interrupt service routines can be omitted.
We reduced the number of interrupts seen by the physical processor
by introducing a signal controller (see Figure 7). The signal controller
has a mask register to mask the signal register during normal operation
and enables the signal register only when the task is blocked. The signal
controller is memory mapped and instantiated for each CPU and DSP
in the architecture.

The ASIPs used in our architecture can be generated by an archi-
tectural synthesis tool (e.g. [2]). ASIPs provide high performance for
application-specific functions but the primitives are executed in a simi-
lar manner as for general-purpose processors. Part of the ASIP memory
should be visible in the global memory map to allow signalling, i.e. to
write the synchronisation signals. On blocking these synchronisation
signals are polled locally by the ASIP.

Hardware implementation & optimisation
The hardware implementation of the protocol for a channel is called a
channel controller. Channel controllers are instantiated per channel in
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Figure 7. A signal controller for a processor

a synchronisation shell (see Figure 8), which is attached to a hardware
processing device. The channel controller is implemented with a generic
network interface to facilitate reuse with any particular network by
adding a network adapter. The synchronisation shell has a signal reg-
ister that is used for signalling in the interrupt-based synchronisation
scheme. This signal register is instantiated per device. All registers in
the synchronisation shell are memory mapped. A channel controller is
implemented in hardware for an input or output channel, and is instan-
tiated for each channel. The mode (i.e. input or output) of a channel
controller is set at the system configuration time. We introduced an
optimisation to reduce the number of system bus accesses by copying
some administrative information values from memory into the channel
controller at configuration/start-up time. This helps to reduce the delay
in servicing synchronisation calls too. When a hardware device needs
a token address (i.e. on a claim data/space call), the token address
can be made available in succeeding clock cycles and if more tokens are
available then they can also be delivered every clock cycle, one by one.
In this implementation, a release_space/data call takes just one clock
cycle for the task. The release_space/data primitives are carried out
by the channel controller. A channel controller running at 100 MHz has
been made within 0.09 mm? in 0.18 pum CMOS technology.

5.2.4. Prototyped implementations

Prototyping becomes an interesting alternative to simulation at the
(partial) clock-cycle true levels (see Section 3). Our prototyping envi-
ronment is a PCl-based platform residing in a host PC [14]. This is
a convenient platform because a large number of FPGA and embed-
ded processor boards as well as development and debugging tools are
available for PCI bus-based systems. Embedded processor boards are
used to run the developed software, while the FPGA boards are used
to map the hardware on. In the prototyping environment, a common
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Figure 8. A synchronisation shell

shared memory space should be visible to all the components (em-
bedded processors and FPGA boards) executing C-HEAP tasks. This
shared memory is implemented using a PCI memory board.

Because the PCI architecture is plug & play, a hard coded address
can not be used to identify a device. The host processor (e.g. Pentium)
is responsible for the first PCI architecture initialisation. This step
is needed because the PCI addresses must be dynamically obtained
(plug & play) before the C-HEAP memory map can be determined.
During the PCI configuration phase, the PC’s host processor passes
the PCI memory base addresses of the boards to the components of
the prototyping system. From this moment on, the host processor and
processor boards are able to communicate directly with one another by
means of the PCI bus. We are currently extending this direct communi-
cation to the FPGA boards too. After the PCI configuration phase, the
host processor starts all the C-HEAP tasks. For this purpose and for
signalling, each board maintains a table (similar to the synchronisation
shell) in the (local on board) shared memory space, which is polled. The
task command tables used for signalling are also used for configuration.
C-HEAP tasks are started for the first time by writing a start command
(by specifying the corresponding command opcode) to this table.

5.3. EFFICIENCY OF THE COMMUNICATION PROTOCOL

We have built a simulation environment to include all previously de-
scribed implementations of the synchronisation primitives. We per-
formed a set of experiments to compare the co-processor architecture
(i.e. centralised implementation of the protocol) with the multi-processor
architecture (i.e. distributed implementation of the protocol), and to
evaluate the impact of the proposed optimisations on the performance [21].
For this purpose, we implemented a multi-processor architecture with
the optimisations (whith static data stored locally) and without, and
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a co-processor architecture is implemented with optimisation (whith a
signal controller attached to the central processor) and without.

Output
(= (o

Figure 9. Application used in our experiments

In our experiments, all tasks were performing synchronisation only
to facilitate the analysis of synchronisation performance. No buffer data
was accessed. All tasks were connected in a chain in which every task
passed tokens to the next task (see Figure 9). A fixed number of to-
kens (e.g. 1000) were introduced in the system and the simulation was
performed until they reached the last task in the chain. Each task was
mapped onto a separate hardware module, which posted a new syn-
chronisation call one clock cycle after completion of the previous call.
All modules were connected to a central bus. We varied the number of
tasks from 4 to 24 in increments of 4, for both the classical co-processor
communication scheme and for the proposed multi-processor architec-
ture scheme. The experimental results obtained for average time per
synchronisation call are shown in Figure 10.
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Figure 10. Time per synchronisation call

As can be seen in figure 10, the average time to execute a syn-
chronisation call for the traditional interrupt scheme (co-processor not
optimised) is almost constant over the number of tasks. This time can
be reduced significantly when our signal controller is used (optimised
co-processor curve). This is because with the signal controller, syn-
chronisation requests of multiple tasks are serviced within a single ISR
execution. Hence, the ISR overhead is divided among all synchronisa-
tion calls being serviced. Due to the long synchronisation delay in the
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co-processor architecture, fine-grain synchronisation, which is needed
to reduce on-chip buffering, is hardly possible.

The optimised multi-processor architecture is 1.5 times faster than
the non-optimised multi-processor architecture, and 8 to 21 times faster
than the optimised co-processor architecture!. The execution delay (ex-
cluding bus contention) of a synchronisation primitive in the distributed
implementation is only 4 cycles. The observed delay is much larger (18
to 30 cycles) beacause the bus load is 100%. The high bus load is due
to the fact that all tasks are only performing synchronisation. Due to
the lower synchronisation delay, less memory needs to be allocated for
communication buffers. This allows on-chip buffering.

To support the flexible part of an application, tasks could be mapped
as software running on the CPU. With the co-processor architecture the
software tasks are not running in parallel with the hardware modules
because the CPU is (fully) loaded with the synchronisation of the
hardware modules. In all variants of the multi-processor architecture
the CPU is free to execute (signal processing) tasks since the synchro-
nisation is executed in a distributed and autonomous manner. In this
case the software tasks synchronise (through software routines) only
with the hardware (or software) tasks they are actually communicating
with. Neither software nor hardware tasks need intervention of a ’third
party’, nor are they interrupted by synchronisation of others. Therefore,
the synchronisation delays are quite low.

The time per synchronisation call is very important in comparing
different protocols, but what matters for an application is the total
execution time. In these experiments the total execution time was de-
termined only by the synchronisation delay. This means that the total
execution time in the non-optimised co-processor implementation is
about 50 times larger than in the optimised multi-processor implemen-
tation [21]. When data are processed along with the synchronisation,
the relative gain will be less but the absolute gain will be still the same.

6. The C-HEAP (re)configuration protocol

Section 5 discussed the protocol used to communicate between the
tasks and processing devices in our architecture. Another issue is the
system’s configuration. For simple systems, the configuration can be
done at start-up time, whereafter the different modules start to perform

! In these experiments all tasks were mapped on hardware devices to enable us
to observe the extremes of the synchronisation delays. The delays in the software
implementation using the polling scheme in a multi-processor architecture are given
in Table IV in Section 7.2.
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their tasks. However, embedded systems have to offer more and more
functionality in order to be attractive for consumers. This leads to
different function modes, which need to be supported by the system.
Therefore, apart from the initial configuration and start-up of the sys-
tem, a certain degree of reconfigurability is needed to be able to switch
between different function modes at run-time. For instance, in the case
of a mobile phone, it may be required to be able to switch between a
normal telephone conversation and listening to the radio.

Section 6.1 describes the C-HEAP reconfiguration protocol. Just like
the communication protocol, this protocol has been standardised and
is transparent to the processing devices, and implementations of this
protocol are available in libraries at all abstraction levels. Section 6.2
describes these implementations.

6.1. (RE)CONFIGURATION PROTOCOL

The protocol for communicating between the tasks in a task graph has
been extensively described. However, there should also be a protocol
and a corresponding set of primitives for setting up and configuring the
task graph. This includes creating, configuring and starting the tasks,
as well as configuring the channels (e.g. number of buffers) and channel
tokens (e.g. token size). If the system has been designed to handle a
single application which is realised by a single fixed task graph (for
example a video encoder), then these operations, which are basically
executed once at system boot time, will be sufficient, and after this
phase the tasks will be able to execute independently.

In a system that supports several function modes, multiple task
graphs exist, each implementing a certain function mode. During op-
eration, the user may want to switch to a different function mode at
run-time, which implies dynamically switching from one task graph
to another. Another use for different task graphs is for Quality-of-
Service, in which for instance a picture improvement filter task may be
dynamically inserted into or removed from the task graph depending on
the selected quality level and/or available resources. Or, a new stream
can be added to the graph, for instance to support Picture-in-Picture
display. All this implies that it must be possible to dynamically recon-
figure the task graph. An introduction to issues relating to this topic
will follow in Section 6.1.1. The primitives and protocol for configuring
and reconfiguring the task graph will be presented in Sections 6.1.2
and 6.1.3.
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6.1.1. Reconfiguration

Tasks, channels and tokens are the entities that make up a task graph.
An entity is either active (the entity has a thread of control) or passive
(the entity consists of data without a thread of control). Thus tasks are
active, and channels and tokens are passive. Whereas all entities can
be created and destroyed, active entities can also be started, stopped,
suspended and resumed. Note that the difference between stopping and
suspending an entity is that the entity loses its state when it is stopped,
while it retains its state when it is suspended and can continue where
it left off when it is resumed. In the following paragraphs we shall
consider in turn 1) the parties involved in changing a configuration, 2)
when a reconfiguration can take place and what it will entail for the
participants, 3) the effects of a reconfiguration, and 4) the impact of
reconfiguration on the system’s performance and efficiency.

If reconfiguration is performed by a single task (henceforth called
the reconfiguration manager) it is centralised, otherwise it is distributed
(and tasks modify themselves). If reconfiguration occurs relatively infre-
quently and involves only a limited number of entities it can be decided
upon and performed by a central reconfiguration manager. This will
simplify the reconfiguration protocol because the number of possible
interactions will be smaller. Reconfiguration of active entities can be
imposed (e.g. a task can be killed), requested (e.g. a task suspends
itself after being asked), or autonomous (e.g. a task initiates a change
without prompting).

During a task’s operation, there may be different points at which it
can be reconfigured. There are several options for defining such reconfig-
uration points. One option is to explicitly code them in the control flow
of a task (e.g. a task checks whether reconfiguration has been requested
via shared data or a control channel). Another option is to insert spe-
cial reconfiguration tokens in the data stream. When reconfiguration is
allowed to take place will depend on the task’s functionality and on the
granularity of communication. A frame-based image improvement algo-
rithm can perhaps be changed without artefacts only between frames.
Whether this will be allowed or not will depend on the application as
a whole. Although the granularity of reconfiguration is independent of
the granularity of communication (they can after all be transmitted via
different channels), in practice, the granularity of communication will
be smaller than (or equal to) that of reconfiguration. Figure 11 contains
an example with various possible reconfiguration points. They are: 1)
at the beginning (or possibly the end) of each iteration loop, 2) when
trying to obtain a full buffer on an input channel or an empty buffer on
an output channel, and 3) within the processing loop. Reconfiguration
point (1) is the most coarse-grained one, e.g. it may correspond to a
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" while (1) {
for (i = 0; i < M; i++) {

(2) — data_in* a = claim data(in);
data_out* b = claim_space(out);
for (j = 0; j < N; j++) {

b[j] = process(a[]l);
}
release_space(in);
release_data(out);
}
}

Figure 11. Typical task loop with possible reconfiguration points

3)

video frame period. Such a location for the reconfiguration point is a
logical choice for e.g. a display task, because if it reconfigures at frame
boundaries no artefacts will be introduced. The disadvantage is that it
may take the task a long time to react to a reconfiguration command,
i.e. the latency will be quite high. At the other extreme, reconfiguration
point (3) is located within the fine-grain processing loop (for example
over pixels within a frame), and allows fast reconfiguration. However,
we may end up with partially processed tokens at the time of reconfig-
uration because the task is allowed to reconfigure at a higher frequency
than the synchronisation. Furthermore, the overhead of checking for
reconfiguration will be high. Reconfiguration point (2) coincides with a
synchronisation primitive. This implies that reconfiguration may take
place at the same data grain as the communicated tokens. In this
case there will be no partially processed tokens left when the task has
been reconfigured. In conclusion, a protocol supporting reconfiguration
should support all of the above because the optimum reconfiguration
points are very task- and application-dependent.

Entities can be created and destroyed during a reconfiguration. How-
ever, modification of entities is more interesting because it entails sus-
pending the use of the entity, modifying it and resuming operation.
The state of the entity (e.g. the token’s data) can be reinitialised or
preserved. For example, in the case of passive entities changing the
capacity of a channel reinitialises the channel’s state, but moving a
channel (i.e. disconnecting and reconnecting it) retains its state. The
state of active entities is reinitialised by stopping and (re)starting, while
suspending and resuming leaves the state unchanged. Before a task can
be started for the first time, it must be created. Similarly it must be
stopped before its destruction.

Although there is some latency involved in reconfiguration, a small
delay is tolerable since reconfiguration occurs infrequently in relation to
normal signal processing (say once every few seconds or even minutes).
The performance overhead of reconfiguration support during regular
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processing consists of extra checks at reconfiguration point locations,
but this overhead is negligible unless reconfiguration points with a small
granularity are chosen (see above). In addition, the control flow of the
tasks becomes slightly more complex, which results in a larger area
for the hardware and a bigger code size for the software. However,
we have a more flexible system which can support more functionality.
Furthermore, dynamic reconfiguration can be considerably faster for
realising mode switches than having to first destroy the entire task
graph and then create another one, and it is possible to achieve seamless
transitions.

6.1.2. (Re)configuration primitives

In C-HEAP, (one of) the CPU(s) in the architecture is responsible for
the configuration and reconfiguration of the task graph. It executes
a reconfiguration manager which is responsible for (re)configuration of
the task graph (centralised reconfiguration). Table IT lists the primitives
relating to configuration and reconfiguration that are called by the
reconfiguration manager. Table III shows the primitives called by the
individual tasks.

Table II. (Re)configuration primitives used by the reconfiguration manager

Primitive Description

task_create/destroy Creates and destroys a task
task_start/stop/restart Starts, stops and restarts a task
task_suspend/resume Suspends and resumes a task

channel create/destroy Creates and destroys a channel

channel _add_branch Adds a branch to a channel

channel reconfigure Reconfigures a channel

set_buffers Assigns the location of the allocated buffer

memory to a channel

6.1.3. Procedure

During the system configuration time (i.e. during set-up of the ini-
tial task graph), the reconfiguration manager performs the following
actions:

1. Initialisation.

2. Creation of the tasks (task_create). This involves allocating mem-
ory for the task data structures and initialising it with information
about task identifiers, mapping on processing devices, etc.
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Table III. Primitives called by the other tasks

Primitive Description
get_task Obtains task information
get_channel Obtains channel information

task_check reconfigure Checks whether a stop or suspend command has
been issued by the reconfiguration manager
wait_restart Exits processing loop and waits to be restarted

wait_resume Suspends itself and waits to be resumed

3. Creation of the channels (channel_create). This includes creating
the channel data structures and specifying the channel identifier,
the producer and consumer tasks, number of buffers and some
operation mode flags.

4. Allocating the memory for the communication buffers and assigning
it to the channels (set_buffers).

5. Starting the tasks (task_start).

Each task initially waits to be started and to obtain its task and channel
information (by doing get_task and get_channel calls). After that, it
typically enters its processing loop.

When a certain task graph is active and executing in steady state, it
can be dynamically reconfigured by the reconfiguration manager. This
manager reconfigures other tasks by issuing reconfiguration commands
(such as start, stop, restart, suspend, resume and destroy). In our
model, tasks and channels are tightly coupled, and channels cannot
be reconfigured unless their corresponding tasks have been reconfigured
first. A key issue is how to halt the tasks’ steady-state operation (active
entities). Since the reconfiguration manager does not exactly know the
progress of each task (communicating this information back and forth
would incur too much overhead), this is performed with a handshake
protocol: the reconfiguration manager requests that a certain task stops
or suspends its operation, and the corresponding task acknowledges it
when it has done so. Tasks can check whether a reconfiguration com-
mand has been issued by using the task_check reconfigure primitive.
This primitive is called in the task loop, its location in the loop corre-
sponds to a reconfiguration point discussed in Section 6.1.1. The tasks
then acknowledge the configuration command (using the wait_restart
or wait_resume primitives), after performing some state cleanup actions
(if necessary).
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C-HEAP allows the following reconfiguration actions on a channel:
destroy a channel, reconnect a channel, change the capacity, change the
size of the tokens, change operation mode flags and move the buffers
to a different memory or memory location. In the case of multi-cast
channels, individual branches can be added or removed at run-time.

6.2. IMPLEMENTATION OF (RE)CONFIGURATION PROTOCOL

This section describes the implementations of the configuration and
reconfiguration protocol for the different processing devices and ab-
straction levels. We will focus on configuration and reconfiguration of
the tasks only, since the other entities (channels, tokens) are passive
and (re)configuring them is trivial and the same for all implementations
(basically just updating their data structures in memory).

6.2.1. Simulated implementations
Within this category we can also distinguish between a software and a
hardware implementation. The main difference between all the software
implementations concerns how to implement a task. In our case, a
task may be implemented as a (UNIX) process or thread. Threads
may come in different flavours, depending on the run-time environ-
ment or operating system used (e.g. PAMELA /pSOS/Linux). Multiple
tasks may be mapped onto the same processor. In this case the op-
erating system takes care of the scheduling of these tasks, and the
designer has control over the priority difference between these tasks.
The reconfiguration manager is a task of its own, therefore the other
reconfiguration commands (stop, restart, suspend, resume and destroy)
and their corresponding acknowledgements are communicated to and
from the other tasks by using inter-task communication mechanisms.
The PAMELA implementation uses semaphores for this purpose, and
the other implementations (pSOS and LINUX) use message queues.
In the case of the ASIPs in our architecture, the reconfiguration
commands and acknowledgements are written into the globally visible
piece of memory inside the ASIP, in a manner similar to that in the
signalling mechanism for synchronisation. In the case of DSPs, some
memory locations allocated in shared memory are used for communi-
cating reconfiguration commands and acknowledgements. Our ASIPs
and DSPs are single-tasking so no operating system support is required.
In the case of hardware devices (ASICs) designed, implemented
and simulated using VHDL, a synchronisation shell is available (see
Figure 8) to synchronise the data communication. This shell also con-
tains two registers dedicated for reconfiguration. One is a command
register in which the reconfiguration manager writes to reconfigure
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the hardware task. The other register is used by the co-processor to
acknowledge the reconfiguration commands. The reconfiguration man-
ager may receive this acknowledgement in two different ways: by polling
this register or by using an interrupt. As in the case of synchronisation
signalling, both approaches have their pros and cons, depending on the
expected acknowledgement latency. A set of control lines from the shell
to the co-processor are used to control its execution.

7. Case study: a multi-standard video and image codec

We will now present a design case of a video and image codec [37] based
on the C-HEAP design methodology and architecture template. The
codec supports both the MPEG-4 (Simple Profile) and H.263-based
video coding standards and the JPEG-based image coding standard.
These coding standards use coding methods [6] based on Discrete Co-
sine Transform (DCT). Figures 12 and 13 depict the typical video codec
and JPEG image codec, respectively. Foln video coding, each MB is
coded using a combination of motion-compensated temporal prediction
and transform coding. That is, an MB is first predicted on the basis of
a matching MB in a previously coded reference frame. The location of
the best matching MB is estimated by the motion estimator (ME). We
used the 3DRS algorithm [17] for motion estimation. The displacement
between the current MB and the matching MB is represented by the
motion vector (MV). On the basis of the MV, the current MB is pre-
dicted (P) and motion-compensated (MC), resulting in the prediction
error for the current MB. The prediction error of the current MB is
then transformed using DCT and the resulting DCT coefficients are
quantised (Q), zig-zag (ZZ) scanned and entropy coded (run-length
encoding (RLE) and variable length encoded (VLE)). In addition, the
quantised coefficients are inverse quantised (IQ), inverse transformed
(IDCT) and inverse motion-compensated (IMC) and stored in the loop
memory as the next reference frame. In JPEG image coding, each
MB is transformed using DCT and the resulting DCT coefficients are
quantised, zig-zag scanned and entropy coded.

We will first explain the followed design trajectory in Section 7.1.
The design and architecture of the codec will be presented in Sec-
tion 7.2, followed by the evaluation and benchmarking of the design in
Section 7.3.
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(a) (b)
Figure 12. MPEG-4 (SP) and H.263 (a) video encoder and (b) video decoder

el 19 |
(a) (b)
Figure 13. JPEG (a) image encoder and (b) image decoder

7.1. DESIGN TRAJECTORY

Figure 14 summarises the design and verification flow of the video/image
codec. The arrows indicate the subsequent steps taken in the top-down
flow. After each step, the design was verified against the previous ab-
straction level. During the design, steps were taken backwards too in
an iterative way (see Figure 2); these arrows have been omitted from
figure.

The functional requirements of the video/image codec were first
specified in a textual format. Then a functional description was con-
structed in C for the codec. In order to obtain an estimate of the
computational load, the C code was profiled on an ARM processor. This
yielded the clock frequency required for a software-only solution and a
breakdown of the computational load for different functional modules
of the codec. The latter was used as a starting point for determining the
hardware-software partitioning. Our main strategy was to implement
the computationally intensive parts that were common to all standards
in hardware, while keeping the encoding parts that were different over
the standards and the control-related parts in software. This provides
the flexibility to adapt the system to different standards.

Thereafter, the selected hardware parts were clustered into proces-
sors, resulting in four processors for the video/image codec: 1) pixel
processor, 2) motion estimator processor, 3) texture processor and 4)
stream processor. The objective of this clustering was twofold. First, to
reduce the synchronisation overhead between hardware and software.
Secondly, to prevent all local communication inside the processors from
generating global bus activity. The latter is crucial for low power. The
communication between the processors is based on the previously de-
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Figure 14. Top-down design and verification flow of the video/image codec

scribed C-HEAP protocol. The partitioned codec application (shown in
Figure 15) was simulated extensively, and the (de)coded images were
verified by comparing them with the output images of the original code.
Since the codecs should behave identical, the output images of both im-
plementations should be the same. This simulation set-up corresponds
to verification step (b) in Figure 14.

Pixel
Pmcesso

Stream

Input Output

processor

Motion
estimator

Figure 15. Partitioned codec application

The input parameters to the hardware processors consisted of two
parts: general settings (e.g. number of pixels in the horizontal and
vertical directions of a picture) and run-time parameters (e.g. the coor-
dinates of the macroblock (MB) currently encoded). In the functional
simulations, pointers to all the parameters were passed to the processors
and were then accessed by the processors. Once the communication had
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been mapped to a hardware interconnect, the processors had to read
the general parameters for each macroblock from a shared memory.
However, it is much more efficient to store the general parameters lo-
cally during initialisation. Therefore, an initialisation mode was added
to each processor, during which the parameters were read and stored lo-
cally. Only the run-time parameters which vary across macroblocks are
communicated. This reduces the bandwidth on the bus considerably.

System simulations were carried out using a bit- and cycle-true
version of the C-HEAP protocol for the communication based on the
ARM bus. The models employed for the processing parts were abstract
processes (UNIX), while the communication models were cycle-true
(verification step (c) in Figure 14). These simulations were used to
obtain bus utilisation figures, and to optimise the communication struc-
ture. This resulted in the use of two busses, one for the control data
and the other for the pixel data.

The penultimate step focused on improving the performance of the
implementation. The result of the previous step was a system without
concurrency. A software task starts a hardware task and awaits the
completion of that hardware task (and vice versa), thus using the
resources inefficiently. Concurrency can be implemented by pipelining
the software and hardware tasks. However, some dependencies between
software and hardware needed to be broken, e.g. through modification
of algorithmic feedback loops. Since the breaking of the dependencies
led to a different behaviour, extensive simulations were carried out
in order to verify that the compression ratio and SNR (signal-to-noise
ratio) were comparable with that of the original reference C description.
The C-HEAP communication and synchronisation primitives combined
with bit- and cycle-true models for the ARM processor and busses were
used to verify performance. These simulations showed that the number
of clock cycles required for the software tasks was within the available
cycle budget. This step corresponds to verification step (d) in Figure 14.

The last step related to the design of hardware processors. Each
hardware processor consists of a customised VLIW core (ASIP) gen-
erated by an architectural synthesis tool [2]. This core consists of an
ALU, one or more arithemetic control units (ACUs), a small instruc-
tion memory, a bus, a controller and some application specific units
ASUs. The ASUs are responsible for accelerating the computationally
intensive operations like (I)DCT, (I)Q, (I)MC, etc. were designed in
RTL-C. The VLIW core, programmed in the C language, is responsible
for scheduling the ASUs.

The resulting architecture was simulated by using the VHDL version
for the C-HEAP communication primitives based hardware proces-
sors and the bit- and cycle-true C-HEAP communication primitives
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based software task and communication busses. This simulation was
performed via C-VHDL co-simulation, and was used to verify the hard-
ware processors. This corresponds to verification steps (e) and (f) in
Figure 14.

7.2. IMPLEMENTATION DETAILS OF VIDEO AND IMAGE CODEC

The architecture of the video and image codec is shown in Figure 16.
It is a dual-bus architecture with separate control and data busses.
The software tasks are executed on the ARM processor and the hard-
ware tasks are executed on the customised VLIW processors (namely
the pixel processor, motion estimator processor, texture processor and
stream processor). An example of the architecture of such a customised
VLIW is shown in Figure 17. The pixel processor (PP) communicates
with the pixel domain (image sensor or display) and performs line-to-
stripe conversion and vice versa for a video/image encode and decode
operation, respectively. The motion estimator processor (MEP) eval-
uates a set of candidate vectors received from software and selects
the best vector for pixel refinements. The output of the MEP consists
of motion vectors, sum-of-absolute-difference (SAD) values, and intra
metrics. This information is used in software (running on ARM) to
determine the encoding approach for the current MB. The MEP is
used only for video-encoding operations.

ARM
Memory

e T
1 ] ] i

Pixel Motion Texture Stream
-« i i fe—n
Processor Bridge Estimator Processor Processor
Processor

TIIII

ARM

BCU
data-bus

Image
Memory

Figure 16. Architecture instance of the multi-standard video and image codec

The texture processor (TP) encodes and decodes MBs and stores the
decoded MBs in the loop memory for the video encode operation. The
output of the TP consists of VLE codes for the DCT coefficients of the
current MB. The TP also does the core functionality for video decode
and JPEG encode/decode. The stream processor (SP) packs the VLE
codes generated by the TP and software for the video/image encode op-
eration. The SP also unpacks the VLE codes for the video/image decode
operation. The SP communicates with the compressed domain (storage
or communication channel) for the encode and decode operations.
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Figure 17. VLIW architecture of the texture processor

Figure 18 shows the pipelining and concurrency of various HW/SW
tasks. The pixel processor is one stripe ahead of the motion estimator
processor, which in turn is two macroblocks ahead of the texture pro-
cessor. The bit rate control running in software comes one macroblock
after the texture processor. Finally, the stream processor lags one stripe
behind.
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Figure 18. Pipelining of hardware and software tasks for the video encode function

The software tasks performed on the ARM processor (for the video/image
codec) consist of:
— Initialisation and control-dependent actions.
— Candidate vector generation for motion estimation.
— Compression mode selection for video (inter/intra).
— VLE and VLD for the headers and motion vectors.
— Bit rate control (for video and JPEG encode) and handshake with
hardware processors.

The embedded memory in our implementation consists of two parts,
namely the ARM memory and the image memory. The ARM memory
contains the operating system, the application software and the data
structures. The image memory consists of the buffer space for the pixel
processor and the loop memory. The size of the loop memory can be
reduced by using an embedded compression technique described in [28].
This allows us to keep it on-chip for fast access and low power.
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Table IV presents the average synchronisation latencies in our codec
design, given in the number of clock cycles. The numbers are about the
same for both the ARM and the customised VLIWs (the synchroni-
sation protocol is essentially implemented in software). The numbers
given for the claim data and claim space primitives hold for the case
that data/space is available so the task will not be blocked. Com-
plementary to the results given in Section 5.3 and [21] for C-HEAP
synchronisation latencies using hardware shells (18 cycles with a com-
pletely congested bus), these figures again prove the efficiency of the
C-HEAP protocol.

Table IV. Codec synchronisation laten-
cies in clock cycles

Synchronisation primitives Latency

claim_data/space 40

release_data/space 36

7.3. EVALUATION AND BENCHMARKING

We evaluated the efficiency of our design against a number of existing
video and image codecs. The results are presented in Table V. As can
be seen in the table, our design is more efficient in terms of area, power
and performance than the rest. The Hitachi design is only capable of
encoding and is a complete software solution, and results in a large area
and power consumption. The other extreme is the Fujitsu codec, which
is completely implemented in hardware. Compared to our design, the
area is larger and it lacks the flexibility of a partial software solution
(only supports one standard). The area of the TI codec is unknown,
but it is expected to be larger than ours, considering the area of the
TMS320C5X DSP and the extra hardware assistance. Of all the designs,
only the design of Motorola and our own design use a multi-processor
solution, and the processors in both systems synchronise with each
other on a macroblock basis. Very significant is also the small loop
memory needed by our design because of the embedded compression.

8. Conclusions and future work

In this article we have addressed the design of complex signal processing
embedded systems. We have applied a top-down design methodology,
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Table V. Comparison of different existing codecs

Supported Frame Frame Area™™ Energy Sync. HW-SW Loop
standard(s) size™ rate (fps) (mm?) (nJ/MB) gran. partitioning memory
Hitachi™™™ MPEG-4 QCIF 15 43 115 n.a. Fused RISC/ 1.0 Mbits
(SpP@L1) DSP CPU on-chip
encoder (SW solution) SRAM
Motorola™ ™™ MPEG-4 QCIF 15 40 67 MB CPU + 2.5 Mbits
(sp@Ll), texture proc., on-chip
JPEG codec ME proc. SRAM
Fujitsu MPEG-4 CIF 15 28 4.9%*x* n.a. ASIC Off-chip
(SPQL3) (HW solution) ~ SDRAM
codec
Texas MPEG-4 QCIF 30 ? 17 n.a. TMS320C5X On-chip
Instruments (SP@L1) (HW assist for SRAM
codec video kernels)
Our design MPEG-4 CIF 30 17 5.5 MB CPU + 0.5 Mbits
(SP@L1), pixel proc., on—Chip
H.263, texture proc., SRAM
JPEG ME proc.,
codec stream proc.

*QCIF: 176 x 144 pixels, CIF: 352 x 288 pixels
**In 0.18 um technology

***Published in ISSCC 2002

****Does not include off-chip SDRAM power

starting with a functional description and proceeding to a silicon imple-
mentation in an incremental way. Different abstraction levels that are
traversed throughout the design process have been identified. Design
decisions taken at each level can be evaluated by means of (multi-level)
simulation.

The important aspects of our methodology are the definition of
a scalable, flexible and modular architecture template along with a
standardised protocol for communication and (re)configuration called
C-HEAP. The use of a template helps shorten the design time and
reduce the design costs by facilitating reuse of components and provid-
ing the models and tools associated with it. We propose an architecture
template based on Distributed Shared Memory that allows for the use
of a variety of processing devices such as CPUs, DSPs, ASIPs and ded-
icated hardware to achieve a balance between performance, flexibility,
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and efficiency. The architecture is scalable by allowing the addition
of extra processing devices and extension of the intercommunication
network.

The C-HEAP protocol, based on Kahn Process Networks, has been
defined to handle the communication between different processing de-
vices. This protocol is implemented in a distributed manner, so that it
is scalable and enables fast synchronisation, thereby making effective
multi-processing possible. Furthermore, the protocol has been extended
to allow the application to configure the system during start-up, and
to reconfigure it at run-time. The C-HEAP protocol comes with well-
defined primitives and a set of libraries containing the implementations
for different abstraction levels and processing devices for simulation.
For prototyping, we have similar implementations (for the relevant
abstraction levels) of the C-HEAP primitives. This allows designers
to quickly iterate between different abstraction levels and evaluate
different hardware-software partitioning options, and hence to cover
a much broader range of the design space in a limited amount of time.

We have illustrated the use of C-HEAP with the design case of a
multi-standard video and image codec. The effectiveness of our com-
bination of design methodology, architecture template and protocol
was proven as our design turned out to be more efficient than other
codecs found in literature. During the design phase, many iterations
were performed across different abstraction levels to evaluate different
hardware-software partitioning and mapping options. Due to the well-
defined primitives and complete library implementations at all levels
of the design flow the iteration time was minimised. Another very
important aspect is the completely C based design flow. Fitting the
architectural synthesis tool (for generating the customised VLIW cores)
into our flow made it possible to use (with some re-writing) the C code
from the higher abstraction levels to generate the hardware processors
without writing any VHDL code by hand. This simplified testing by
reusing the test method designed at the top level, shortened the design
iteration time and made the design much easier to maintain and ex-
tend. The reconfiguration protocol was not used in this design as the
supported function modes were sufficiently similar, which meant that
switching between them could be realised centrally in the software task,
instead of having to do it by reconfiguring the task graph. However,
we foresee that future applications and systems will need this kind of
reconfiguration possibilities.

C-HEAP has proven to be efficient for designing medium-grain signal
processing systems such as encoders and decoders. Complete systems
or applications (e.g. digital video recorders) could comprise of a combi-
nation of such sub-systems. Although the C-HEAP protocol is also ca-
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pable of handling the communication between such sub-systems, larger
systems will involve other issues, for instance memory usage. C-HEAP
allows for quick synchronisation and therefore small token buffer sizes,
but the tokens are locally allocated and managed per channel. This
has a number of disadvantages. First, data can not be passed from one
channel to another without being copyied because full and empty tokens
circulate in FIFO-fashion on one channel. Filters, (de)multiplexers and
shufflers are then more expensive to implement [26]. Secondly, buffer
usage cannot be optimised globally (over channels). For example, the
number of tokens in a system as a whole may be considerably smaller
than the sum of the worst-case token usage of all the channels com-
bined. Thirdly, run-time choices of token size and location (memory)
are precluded. Global buffer management does not suffer from these
drawbacks. Arachne [24] is an example of a protocol based on global
buffer management which offers more flexibility and dynamism, and
allows more efficient memory management. It uses a central token
manager and is therefore less scalable and has longer synchronisation
latencies than C-HEAP. We feel its advantages make it suitable for large
systems, in which higher latency is acceptable. Integration of the two
techniques in which C-HEAP is used to design efficient sub-systems
which are then combined into one large system using Arachne could
result in an optimum overall system. This investigation is a topic for
future work.
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