
Reasoning About VHDL Using Operational and

Observational Semantics

K. G. W. Goossens⋆

Dipartimento di Scienze dell’Informazione
Università di Roma “La Sapienza”

Roma, Italy
kgg@dsi.uniroma1.it

Abstract. We define a Plotkin-style structural operational semantics
for a subset of vhdl that includes delta time, zero-delay scheduling
and waits, arbitrary wait statements, and (commutative) resolution func-
tions. While most of these features have been dealt with in separation,
their combination is intricate. We follow closely the “careful prose” def-
inition of vhdl as given in [9].
We prove a (conditional) monogenicity result for the operational seman-
tics showing that the parallelism present in vhdl is benign. A classifica-
tion of program behaviours is also given.
While the semantics is of interest, of greater importance is the interpre-
tation of the mature process algebra theory to our particular setting. An
adaptation of bisimulation may be constructed but the concept of an
observer, a process which inspects or acts as a test harness, turns out to
be more useful. It leads naturally to a notion of observational equality

that is a congruence with respect to parallel composition. This impor-
tant result enables substitution of behaviourally equivalent subprograms
without affecting the overall program behaviour. The capability to pass
(incapability to fail) a test gives rise to a the may (must) preorder on
processes. These preorders are shown to coincide.

1 Introduction

vhdl is one of the most widely used hardware description languages. The lan-
guage definition [9, 10] is given in English prose, opening the way to a multitude
of formal semantics (see, for example, the recent collection of papers [6] and [1,
2, 7, 14–18]). As vhdl is a large language most of this research limits itself to
subsets of vhdl, often ignoring essential features of the vhdl model of hardware,
such as delta time, signal resolution, and the structural hierarchy. In this work
also we deal with a fraction of the language, but our intention is to deal with all
fundamental behavioural constructs present within one entity. The vhdl subset
therefore contains local variables, (possibly resolved) signals, signal assignments
(including zero delay signal scheduling), all versions of wait statements, if and

⋆ This work is supported by the euroform network sponsored by the Human Capital
and Mobility programme of the European Community.

while statements, and parallel composition of sequential programs. In Section 3
we present a Plotkin-style structural operational semantics [13] that closely fol-
lows the informal vhdl definition. We believe that an operational framework
is most natural for vhdl because it is generally understood in the context of a
simulation kernel processing a hardware description.

We prove several results of the operational semantics, including a classifica-
tion of program behaviours (Theorem 2). Also in Section 4 we show a (limited)
monogenicity result for the operational semantics: despite the presence of par-
allelism executions are essentially deterministic (Theorem 1). At this point we
must point out that the semantics for our vhdl subset is based on vhdl87 [9]
instead of vhdl93 [10]. The latter includes shared variables that fundamentally
change the semantic model of vhdl. In fact, one of the important properties of
vhdl87, monogenicity, no longer holds, making system verification more com-
plex, both in theory and practice. (Consult Section 3.1 for further details.)

Building on our formalisation of vhdl we define in Section 6 an observa-
tional semantics using the testing theory of [4]. In this framework two programs
are considered equal if they pass the same set of tests. An observer is nothing
more than the formalisation of a test harness, analysing the output generated
in response to particular inputs. The theory thus blends comfortably with the
tradition of hardware testing. Alternatively, vhdl models reactive systems that
respond to a active environment that can be interpreted as a program or circuit
because, essentially, it is defined by changes it generates on input signals. Both
views support the identification of observer and observee, leading to a pleasing
symmetry and simplicity. The use of an established theory such as testing allows
us to import its concepts such as may and must preorders and the observation

semantics. We prove that due to the limited nondeterminism in vhdl may and
must preorders coincide. Also, observational equivalence is a congruence with
respect to parallel composition (Theorem 4). This theorem is important because
it allows us to substitute observationally equivalent system components without
affecting the overall system behaviour.

2 Definition of the VHDL Subset

Our vhdl subset contains local variables, variable assignment, signals (possibly
resolved), signal assignments (including zero delay signal scheduling), full-blown
wait statements, if and while statements, and parallel composition of sequential
programs. The abstract syntax is defined as follows:

pgm ::= ‖i∈I ss

ss ::= x :=e | x ⇐e after e | wait on S for e until e | null |
ss;ss | while e do ss | if e then ss else ss

e ::= v | x | e binop e | unop e | s’delayed(e) | null

Binary operators binop include ∧, ∨, −, and +; unary operators include ¬ and
−. I is an arbitrary, finite index set for processes and S a finite, possibly empty
set of signal names. x is a variable or signal name (x ∈ Var ∪ Sig) and v is a
value from a given value domain (v∈Val); see below for Var, Val, and Sig.

Abbreviations

In the following we expect vhdl processes of the form process [(S)] begin ss end
process to have been transformed to while true do (ss [;wait on S]) prior
to evaluation in our semantics. Processes are then a special case of sequential
programs and we use the terms process and sequential program interchangeably.

In the context of the wait statement, when on S, for e, or until e is omit-
ted, on T (T is equal to the set of all signals appearing in the until clause),
for ∞, or until true are to be inserted respectively [9, Section 8.1]. Similarly,
s ⇐ e is shorthand for s ⇐ e after 0. We adopt a single time scale and thus
omit suffixes such as ns.

3 A Structural Operational Semantics

Regarding the static semantics of our vhdl subset we expect expressions and
programs to be well-typed, following the usual vhdl rules.

Before introducing our semantic entities it is helpful to show the relations
and semantic functions that constitute our structural operational semantics:

E : e × Store → Val⊥
→ss: (Store × ss) × (Store × ss)
→pgm: (P(Store) × pgm) × (P(Store) × pgm)

E is a semantics for evaluating expressions in a store, →ss defines how statements
evolve together with a store, and →pgm relates programs and their state (a set of
stores) to new programs and state. The latter are relations instead of functions
because computations can be nondeterministic. A program and a set of stores is
equivalent to a set of sequential programs each with their own store; to emphasise
this fact we often regard →pgm as having type P(Store × ss) × P(Store × ss)
and write ‖I <σi, ssi > for <ΣI , ΠI > where ΣI ≡ {σi|i ∈ I} (a set of stores)
and ΠI ≡ ‖I ssi (a set of processes).

3.1 Semantic Entities

We take as given a value domain Val, which must include natural numbers and
booleans, together with appropriate operators +, −, ∧, ∨, and ¬. Assuming also
a domain Var of variables and a domain Sig of signals we define:

Store = (Var 7→ Val) × (Sig 7→ P(ZZ × Val⊥))

Signals are mapped onto sets f , which we will frequently interpret as partial
functions f : ZZ → Val⊥ with the following intuition: for n < 0, f(n) is the value
of the signal of n time steps ago; f(0) is the current value of signal s; for n ≥ 0,
f(n + 1) is the projected value for s for n time steps into the future. Thus s ⇐
e after n affects σ(s)(n + 1), and σ(s)(1) contains the value scheduled for the
next delta cycle. σ(s) contains at least <−∞, i> and <0, v> for initial value i

and current value v of signal s. Note that only for n > 0 is <n,⊥> a valid pair
in σ(s); it then encodes a null transaction for time n.

The types which are used together with the, possibly subscripted and primed,
canonical elements are: v ∈ Val ; s ∈ Sig ; σ ∈ Store; Σ ∈ P(Store); Π, ‖I ssi ∈
P(ss), pgm ; c, <σ, ss>∈Store × ss; C, <ΣI , ΠI >, ‖I <σi, ssi >∈P(Store × ss).
As discussed previously, there is an obvious correspondence between P(ss) and
pgm. Whether we use <ΣI , ΠI > or ‖I <σi, ssi > depends on the emphasis
we wish to place on the interpretation of the element. We call c a sequential
program configuration and C a (program) configuration. We omit the index set
I of configurations where it is not relevant.

x is either a variable or a signal. Variable and signal names can be distin-
guished if necessary, for example by making Var and Sig disjoint. This allows
us to unambiguously write σ(x) to obtain a value for either x∈Var or x∈ Sig

(also implicitly inserting appropriate projections on the ith component πi). We
define domVar = dom ◦ π1 and domSig = dom ◦ π2. We write null for the
bottom element of Val⊥ and leave implicit projections and injections converting
between Val and Val⊥.

Semantic Functions

Two functions, T and U , are defined to handle the advance of time (rule 7) and
delta time (rule 8). They are best read in conjunction with these rules.

The advance of time T on a store is defined as follows: for signals we advance
time, i.e. T (σ)(s) = {<n− 1, v>|<n, v>∈σ(s)}∪{<0, σ(s)(1) else σ(s)(0)>}.
Here x else y means “if x is defined then x else y.” Variables are unchanged:
T (σ)(x) = σ(x).

A signal s is active if ∃σ ∈ ΣI , v ∈ Val⊥. <1, v> ∈ σ(s). A set of stores is
then updated as follows: U({σi|i ∈ I}) = {σ′

i|i ∈ I} where variable entries and
quiet (non-active) signals are unchanged: σ′

i(x) = σi(x). For active signals s the
current value1 is replaced by the value rs, obtained through the signal resolution
function fs (equal to the identity function for unresolved signals):

rs = fs{{vi| ∃i∈I. <1, vi >∈σi(s) ∧ vi 6= null}}
σ′

i(s) = (σi(s) \ {<0, σi(0)>, <1, σi(1)>}) ∪ {<0, rs >}

The multiset {{·}} contains all the values scheduled for signal s for the next delta
time, excluding null signal assignments. The use of a multiset ensures that
identical values are not coalesced ({{1, 1}} 6= {1, 1}) and that fs can not depend
on any order of its elements. We do not, therefore, model resolution functions
that depend on the order of values in their input array, even though the vhdl

definition does not forbid these [9, Section 2.4]. Because the simulation model of
vhdl was clearly designed to ensure monogenicity (Theorem 1) we feel justified
restricting resolution functions to be commutative.

1 The driving and effective values coincide for all our signals.

3.2 Expressions

The expression fragment of the language may be given any suitable semantics.
We show two of the seven rules in a denotational style:2

E [[x]]σ = σ(x)(0) if x∈domSig (σ) (1)

E [[s’delayed(e)]]σ = σ(s)(n) largest n∈dom(σ(s)). n ≤ −E [[e]]σ (2)

3.3 Statements

<σ, ss1 > →ss <σ′, ss′>

<σ, ss1;ss2 > →ss <σ′, ss′;ss2 >
(3)

Read this as “assuming that the store-program pair <σ, ss1 > evaluates to store
σ′ with program ss′1, the pair <σ, ss1;ss2 > evaluates to the program ss′;ss2 in
store σ′.”

E [[e]]σ = v E [[et]]σ = t

<σ, x ⇐ e after et> →ss <σ[f/x], null>
(4)

where f = (σ(x) \ {<n, σ(n)>|n > t}) ∪ {<t + 1, v>}.
There is no rule for null alone: it is handled in conjunction with the sequencing
operator:

<σ, null; ss> →ss <σ, ss> (5)

This poses no problems as there is always a next statement because every se-
quential program is wrapped in a non-terminating while loop. Similarly wait
statements are treated together with the parallel composition operator (rules 7
and 8 of Section 3.4). The remaining five rules, for the assignment, while, and if
statements, are standard.

3.4 Programs

So far the semantics has been straightforward. Its complexity lies with the ad-
vancement of time. vhdl’s timing model is unusual, and process synchronisation
and communication is rather convoluted. A vhdl program consists of a set of
communicating sequential processes which execute independently of one another
(this aspect is handled by rule 6). Global synchronisation occurs when all pro-
cesses have encountered a wait statement and at this point communication via
shared signals is effected. If no signal has changed (the circuit described by the
program has settled into a steady state) time is advanced (rule 7). If, on the
other hand, some signal remains active relevant processes are reactivated with-
out any change to time (rule 8) – this zero-time increment is also known as delta
time. Process resumption involves removing the leading wait statement due to

2 We disallow s’delayed(0) which the last rule incorrectly equates to s. This is easily
remedied by the addition of a component in the Var to Val⊥ map to store the
penultimate value of s.

either (i) a change on a signal on which is being waited and the boolean condi-
tion holds, or (ii) a time-out specified in the until clause. If neither condition
is satisfied the process remains suspended.

The following rule allows the processes that make up a program to evolve
independently.

<σj , ssj > →ss <σ′
j , ss

′
j >

‖I∪{j} <σi, ssi > →pgm‖I∪{j} <σ′
i, ss

′
i >

(6)

σ′
i = σi and ss′i = ssi for all i 6= j, and σ′

i = σ′
j and ss′i = ss′j for i = j.

The time increment rule advances time by (i) updating all the stores (T (ΣI),
effectively by subtracting one from all signal function indexes), and (ii) decreas-
ing by one all time-out clauses in wait statements (E [[tei]]σi − 1).

¬resume(<ΣI , ‖I ssi(tei)>)

<ΣI , ‖I ssi(tei)> →pgm <T (ΣI), ‖I ssi(E [[tei]]σi − 1)>
(7)

For each i ∈ I ssi(ti) is equal to (wait on Si for ti until bei; ri). resume

determines if there is a process that must be resumed because it timed out
(timeout) or contains an active signal (active). (event is used in rule 8.)

resume(<ΣI , ‖I ssi(tei)>) ≡ ∃i∈I. active(σi) ∨ timeout(σi, tei)

active(σ) ≡ ∃s∈domSig(σ), v∈Val⊥. <1, v>∈σ(s)

timeout(σ, te) ≡ E [[te]]σ = 0

event(σ, σ′, s) ≡ σ(s)(0) 6= σ′(s)(0)

The delta-time advance rule is more involved: it applies when all processes
are blocked in a wait and there exists an active signal (we have not yet reached a
stable state) or a wait for 0. First resolution functions are applied to compute
new current signal values (U(ΣI)), and then a process is activated (i.e. the
process’s leading wait statement is removed – † below) if it timed out or a signal
on which it waited was active.

resume(<ΣI , ‖I ssi >)

<ΣI , ‖I ssi > →pgm <U(ΣI), ‖I ss′i >
(8)

If U(ΣI) = {σ′
i|i ∈ I} and if ssi is equal to (wait on Si for tei until bei;

ri), for each i∈I, then we define

ss′i =

ri if timeout(σi, tei)∨
∃s∈Si. event(σi, σ

′
i, s) ∧ E [[bei]]σ

′
i

(†)

wait on Si for ti until bei; ri otherwise, where ti = E [[tei]]σi

Strictly speaking, waiting programs in rules 7 and 8 must be defined as
follows:

Definition 1. A sequential program is waiting if it is of the form:
(· · ·(wait on S for e while te; ss1); · · ·); ssn) for some S, e, te, and ss1

to ssn. A program is waiting if all its constituent sequential programs are waiting.

In the definition for ss′i in both rule 7 and 8, we evaluate the time-out clause
every time. Although this seems contrary to the language definition [9, Sec-
tion 8.1], it functions correctly in our setting for the following reason: tei’s first
evaluation corresponds to the only evaluation in the definition. Subsequent eval-
uations of the same wait statement are vacuous in the sense that tei has been
replaced by its denotation E [[tei]]σi. After the wait statement is deleted (activa-
tion of process – † above) the next encounter of the same wait statement will
contain the expression tei afresh as a consequence of the while loop surrounding
every process body (cf. Section 2).

The boolean expression bei in wait statements has the opposite characteristics
of the time-out clause: it must be evaluated anew every time the wait statement
is encountered. Also, the time-out clause is evaluated at the time of suspension
(i.e. with stores ΣI) whereas bei is used at time of reactivation (with U(ΣI)) [9,
Section 8.1].

In the following we will use the labels A, T, and δ with the →pgm relation
to indicate that rule 6, 7, or 8 has been used respectively. We will frequently
omit the pgm subscript from →pgm. Let Act be {δ,T,A}, and let α range over
elements from Act.

4 Properties of the Operational Semantics

In this section we first show that vhdl is essentially deterministic. Then we give
a classification of program behaviours that is more refined than usual.

4.1 Parallelism and Nondeterminism

Languages that contain parallelism normally are nondeterministic, complicat-
ing both the design and verification of programs. Even though vhdl includes
the parallel execution of processes its somewhat peculiar simulation model, in
particular the use of delayed signal updates, ensures that the resulting nonde-
terminism is benign. In vhdl nondeterminism only arises through A actions,
i.e. arbitrary interleaving of processes. But at every δ or T action all execution
paths converge so that the visible behaviour is perfectly deterministic. By the
visible behaviour we intend all current and past signal values, as opposed to
the whole system configuration that also includes projected signal values and
variables. This analysis leads naturally to the following theorem:

Theorem 1 ((Monogenicity of →pgm)). For all C, if C
α
→ C′ then C′ is

unique, with the proviso that if α is equal to A then C′ must be a waiting
configuration.

The proof is straightforward and relies on the monogenicity of the semantics
for expressions and sequential statements.3 The relevance of this theorem is
elucidated by the following result.

3 Proofs of all theorems have been omitted from this paper; they may be found in [8].

Corollary 1. At any point in a computation the visible system state is unique:
For all C, if C →∗

pgm C′ and C →∗
pgm C′′ are two computations of equal length

then C′ =Visible C′′.

C =Visible C′ may be informally stated as: all past and current values of all
common signals of C and C′ are equal.

4.2 Program Behaviours

Programs of sequential languages either terminate or diverge. Parallel languages
have the further possibility of deadlock. vhdl, of course, is different. Let us first
consider individual sequential programs. A sequential program configuration c
diverges if c can do an infinite number of →ss steps. Then every sequential
program configuration either diverges or evaluates to a waiting configuration
(Definition 1). Divergence in a sequential program is always due to a while
statement. Because δ and T actions exhaust all other possibilities, at the level
of programs it then follows that:

Lemma 1 ((Liveness)). It is not possible for a program configuration to dead-
lock, that is, to reach a state in which no transactions are possible.

Using the program configuration Ωn ≡ while true do wait for n we can now
define various behaviours of program configurations C:

– C diverges sequentially if C can do an infinite number of A actions with-
out intervening T or δ actions. Any diverging sequential program causes the
enclosing program configuration to diverge sequentially. All sequentially di-
verging configurations are strongly bisimilar to ∆ ≡ while true do null.
(We can define strong and weak bisimulation as usual with Act = {A, δ,T}
and regarding A as the silent action.)

– C delta-diverges if C can do an infinite number of δ actions without inter-
vening T actions. All delta-diverging configurations are weakly bisimilar to
Ω0.

– C has an infinite behaviour if C can do an infinite number of T actions
and infinitely many δ or A actions. The configuration Ωn causes an infinite
behaviour for any finite n > 0. There is no single configuration to which all
programs with an infinite behaviour are bisimilar.

– C has terminated if C can do an infinite number of T actions without other
intervening actions. Thus, all terminated configurations are strongly bisimi-
lar to 0 = Ω∞. A program configuration C then has a finite behaviour if C
can evolve to a terminated configuration in a finite number of steps.

That this list is exhaustive may easily be proved:

Theorem 2. Every program configuration C exhibits exactly one of finite be-
haviour, infinite behaviour, delta-divergence, or sequential program divergence.

This result reflects to some extent the stratified nature of vhdl’s simulation
model. In order of increasing granularity we encounter: evaluation of expressions
(E); evaluation of statements (→ss) or equivalently asynchronous process execu-
tion (A actions); computation of a fixed point within every time step (δ actions);
and finally time steps modelled by T actions. (We refer to [7] for a similar hi-
erarchy.) Delta delays model internal computation steps and should be invisible
to the user. Program divergence may take place at the sequential program level
(within one process) or may be due to the failure to reach a fixed point when
several processes may be involved. In both cases progress of the system as a
whole is inhibited, even though the causes are very different.

4.3 Program Transformations

Operational semantics are always rather cumbersome to work with. We pre-
fer therefore to work with derived properties. At the level of statements (→ss)
these include program transformations. Behavioural notions to be introduced in
Section 6 are more useful when discussing processes.

vhdl processes consists of two separate data spaces, for variables and for
signals, that are to a large extent independent. Some examples of transformations
that are valid in vhdl, in addition to usual sequential program laws are:

– s1 ⇐ e1 after n1; s2 ⇐ e2 after n2 =ss

s2 ⇐ e2 after n2; s1 ⇐ e1 after n1 if s1 6= s2

– s ⇐ e1 after n1; s ⇐ e2 after n2 =ss s ⇐ e2 after n2 if n2 ≤ n1

– s1 ⇐ e1 after n; x := e2 =ss x := e2; s1 ⇐ e1 after n
if x 6∈ FV (e1). FV (e1) denotes the free variables of e1.

– if e then (ss1; s ⇐ e1 after n1) else (ss2; s ⇐ e2 after n2) =ss

if e then (ss1; xnew := e1; x′
new := n1) else

(ss2; x := e2; x′
new := n2); s ⇐ xnew after x′

new

xnew and x′
new must be fresh variables. C1 =ss C2 (sequential program equiv-

alence) iff ∀C′
1, C

′
2. (C1 →ss C′

1 6→ss) ∧ (C2 →ss C′
2 6→ss) ⇒ C′

1 =Common C′
2.

=Common encodes equality of the stores on the common domain and by C 6→ss

we mean that C cannot do another →ss transition. Using these rules most “real
computation” can be moved to immediately follow the wait statements and sig-
nal assignments can immediately precede wait statements.

5 Towards a More Abstract Semantics

The operational semantics presented in the preceding sections is useful because
it allows formal reasoning about vhdl programs. It is, however, not abstract
enough because it distinguishes programs that intuitively behave in the same
way. Consider, for example, the two nand gates p1 and p2:

not ≡ while true do (wait on {i}; o ⇐ ¬i)
or ≡ while true do (wait on {i1,i2}; o ⇐ i1 ∨ i2)

and ≡ while true do (wait on {i1,i2}; o ⇐ i1 ∧ i2)

p1 ≡ and [x/o] ‖ not [x/i]
p2 ≡ not [i1/i, x1/o] ‖ not [i2/i, x2/o] ‖ or [x1/i1, x2/i2]

[a/b] indicates that signal b has been renamed a. Programs p1 and p2 have
the same input-output behaviour but a different structure. A more abstract
notion of equality at the level of statements (=ss) can be defined but it is not
always easy to see if one program can be transformed into another, even if a
complete set of transformations were to exist. Moreover, this approach works
only for sequential program fragments without wait statements within single
processes because process interaction is outside the scope of =ss . The following
observation aggravates this limitation. Hardware systems are composed of many
concurrently operating components that can be modelled by vhdl processes.
Often these processes are relatively simple (in structural descriptions they could
correspond to individual gates) and it is their interaction that requires the focus
of attention. A sufficiently abstract method to compare complete processes or
programs is therefore required. For any labelled transition system two candidates
exist: bisimulation [12] and the testing theory of [4]. We discuss both in turn.

5.1 Bisimulation

We briefly referred to bisimulation when defining various program behaviours in
Section 4.2. Define the set of actions Act by {A,T, δ} where the labels A, T,
and δ represent applications of semantic rules 6, 7, and 8 respectively. Intuitively
two configurations are then strongly bisimilar if each is capable of matching all
the actions of the other [11]. This is a very close correspondence because A
actions represent computation steps internal to sequential processes and even
null; null and null are not strongly bisimilar. Since our interest lies at the
level of processes we regard A as a silent action (like τ in ccs). This leads to
the weak bisimulation in which A actions are essentially ignored. As an example,
recall that a program delta-diverges if it can do an infinite number of δ actions
without intervening T actions, i.e. is weakly bisimilar to while true do wait

for 0. In fact, even delta time is really a computational artifact and does not
correspond to any hardware behaviour that vhdl is intended to model. This
leaves us only T actions to observe, corresponding to the ability to observe the
passing of time, and no more. This is a rather minimal notion of observation.

A more serious problem is that bisimulation ignores the functional behaviour,
that is, the values of signals, so that s ⇐ true and s ⇐ false are bisimilar. In
essence process algebras such as ccs take a highly abstract view of programs: a
process is defined by the actions it can perform, and the state is contained within
the process term. However, in our formalisation of vhdl information is not given
by the labels of →pgm but by the values on input and output signals of a program.
The use of relations =Visible and =Common of previous sections are manifestations
of this fact. In fact, it is not difficult to extend bisimulation to take into account

signal values (at δ and T actions all current values of common signals must
coincide). In common with value-passing process algebras vhdl’s signals further
complicate bisimulation by requiring that when a value is read all possible values
be taken into account. This is normally handled by a quantification over the
value domain of relevant action but the asynchronous nature of vhdl (discussed
in more detail below) necessitates the additional possibility of “no input.” A
rough sketch of the extended definition of bisimimulation would be:

Definition 2. A binary relation S over program configurations is a weak signal

bisimulation if <CI , CJ > ∈ S implies, for all α ∈ Act , ∀C′
I . CI

α
→ C′

I implies

∃C′
J . CJ

α
⇒ C′

J ∧C′
I =Visible C′

J∧ (if α = δ or T then for all common signals s,
for all vs ∈Val⊥, either set the projected value of s to vs in C′

I and C′
J (giving

C′′
I and C′′

J) or leave it unchanged) ∧<C′′
I , C′′

J >∈S. (And vice versa.)

In summary, the notion of bisimulation is well adapted to abstract process
algebras but turns out to be intricate to state and cumbersome to work with in
our more concrete operational semantics. This is unfortunate because the proof
method of finding bisimulations to prove program equivalence is efficient and
elegant.

5.2 Testing

The testing framework of [4] is a method for comparing programs; two processes
are considered equal if they pass the same set of tests. An observer is a process or
program that emulates the environment of a circuit, in other words, it supplies
the observee with inputs and analyses the results. A test is successful if the
observer indicates success, for example by raising a distinguished flag. If two
circuits pass the same set of tests they are indistinguishable by all environments
and may hence be considered equal. This is the basis of observational equality.

Testing, like bisimulation, has traditionally been applied to process algebras
but, unlike bisimulation, works well for operational semantics (see also [5]).

Recall that bisimulation is maladapted for the presence of an explicit state
that must be partly ignored. An observer is a normal program (collection of
processes) and as such can access only its local variables, and current and past
values of signals. Thus there is no need to explicitly restrict the scope of visibility.
Per definition an observer can only access the visible environment as defined by
=Visible .

The primary data observed during bisimulation are the labels of the seman-
tic relation but in our testing framework signals take first place. Value passing
considerably complicates bisimulation (requiring quantification over all possible
input values) but it comes naturally to observers, which are, after all, just pro-
grams. Moreover, vhdl may be said to be asynchronous. That is, a program
can continue to evolve internally (modify its state, diverge) or externally (pro-
duce results) without or despite the intervention of the observer. Also, inputs
are non-blocking: if an input signal is active the incoming value will be consumed
at the first opportunity (rule 8), but the lack of input data (more precisely, a

quiet signal) does not inhibit execution of the program (cf. Theorem 1). This is
fundamentally different from synchronous languages such as ccs on which bisim-
ulation and testing are based. There only signal activity counts, whereas vhdl

also includes events, null transactions, and values.4 While asynchrony combines
uneasily with bisimulation, an observer naturally emits or omits input data at
specific points in time.

All in all, observers cope well with programs exactly because they themselves
are programs. Apart from a single distinguished flag success no new machinery
needs to be introduced.

5.3 Conclusion

The two notions of bisimulation and observation are pivotal to the theory of pro-
cess algebras. From the previous sections we may conclude that the observational
framework can be more easily adapted to our structural operational semantics.
Both methods are explored in [8], but in the following we restrict ourselves to
the testing theory. On a more philosophical level, the use of bisimulations is a
positive method in the sense that it allows us to show that processes are equal,
in contrast to testing which is negative making it easy to prove that two pro-
cesses are different. To prove equality we need to find only one bisimulation but
need to run an infinite number of tests (because the number of observers is infi-
nite). Conversely, to show inequality we need find only one observer. Thus, even
though bisimulation is not further elaborated upon it remains an alternative
worth investigating.

6 An Observational Semantics

To interpret our semantics within the testing theory of [4] we need to define
the following entities: a set of processes Q, a set of observers O, a set of states
States and a set of successful states Success, and a method of assigning to every
observer CO and process CP a non-empty set of computations Comp(CO, CP).

Q and O are both equal to the set of all program configurations – except that
observers may use the distinguished signal success – because a program is not
only defined by its program text but also by the values its variables and signals
have.5 In addition to the store ΣI of a program a state comprises the program
text ‖I ssi because it must be known how far each process has advanced in its
execution. The program text is manipulated and is therefore part of the state so
that States is equal to the set of all program configurations (store and program
text). A computation is the set of all states an observer-observee pair passes

4 In Definition 2 “no input” corresponds to a quiet signal, vs = σ(s)(0) to an active
signal without an event, and vs 6= σ(s)(0) to an active signal with an event. In the
case of vs = null, s is active but may or may not have an event, depending on
resolution. See Section 3.4 for active and event.

5 Variables and signals receive their initial value directly in the store. Signal resolution
functions are also part of a program configuration.

through. Finally, a program passes a test if the observer has assigned true to the
reserved signal success.

Q ≡ P(Store) × pgm

O ≡ P(Store) × pgm

State ≡ P(Store) × pgm

Comp(<ΣO, ΠO >, <ΣP , ΠP >) ≡ {Ci|C0 = <ΣO∪P , ΠO∪P > ∧ Ci →pgm Ci+1}

Success ≡ {<ΣI , ΠI >|∃i∈I. σi(success)(0) = true}

A state is successful if it is an element of Success and a computation is successful

if contains a successful state and is unsuccessful otherwise.

Let us recapitulate what we have defined so far. Given a program configura-
tion we add to the system a number of processes that test the program. They
simulate the environment by providing all input stimuli and analysing outputs.
When the observer (or test harness) decides that the program behaves as it
should it signals success on the reserved signal success. The framework is quite
simple: observers are program configurations like the programs they test with
the exception that they can access the reserved signal success. No special start
or stop signals are necessary (see below for a more detailed discussion on this
point) and constructing a test entails simply putting the program and observer
in parallel.

Having moulded the testing framework to our needs, we immediately obtain
the following concepts:

Definition 3. A program configuration CP may satisfy the observer CO, writ-
ten CP may CO, iff there exists a successful computation in Comp(CO, CP).
Similarly, CP must satisfy the observer CO, written Cp must CO, iff all compu-
tations in Comp(CO, CP) are successful.

Definition 4. For a given set of observers O we define:

– C1 ⊑may C2 iff ∀CO ∈O. C1 may CO ⇒ C2 may CO

– C1 ⊑must C2 iff ∀CO ∈O. C1 must CO ⇒ C2 must CO

– C1 ⊑test C2 iff C1 ⊑may C2 ∧ C1 ⊑must C2.

The may and must preorders indicate a fitness for purpose: ⊑may can be read
as the capacity to pass a test so that C ⊑may C′ means that C′ can pass at
least all the tests C can pass. The preorder ⊑must indicates the incapacity to

fail a test and C ⊑must C′ states that all tests that C always passes are also
always successful for C′. This then induces a notion of implementation: CP

implements a specification CS (CP ⊑impl CS) iff CP ⊑may CS ∧ CS ⊑must CP .
An implementation must satisfy all tests that the specification always satisfies;
moreover, the implementation may not pass tests that the specification does not
pass. The former clause defines the minimum behaviour an implementation must
exhibit, the latter indicates the limit of possible behaviours of an implementation.

6.1 Results of the Observational Semantics

Due to the limited nondeterminism of vhdl (Theorem 1) the may and must
preorders coincide, as is shown by the next theorem.

Theorem 3. ⊑may=⊑must=⊑test

The result can easily be shown: observers can only inspect the visible system
state which by Corollary 1 has a unique computation path. This result allows us
to omit the may, must, and test subscripts without ambiguity. We write ≃ for
the equivalence relation induced by ⊑ (≃= ⊑ ∩ (⊑)−1). It is equal to previously
defined implementation preorder ⊑impl.

Suppose two programs have the same input-output behaviour but possibly
a different structure (p1 and p2 of the previous section, for example). Within
a larger system could some or all occurrences of p1 be replaced by p2 without
changing the behaviour of the system as a whole? The answer is yes, if we use
observational equivalence:

Theorem 4. ≃ is a congruence with respect to parallel composition. That is,
CJ1

≃ CJ2
⇔ ∀CI . CI ‖ CJ1

≃ CI ‖ CJ2
. (Taking care that variables occurring

in only one of CJ1
and CJ2

are not captured by CI .)

The proof relies on there being no restriction on observers CO so that any context
CI can be interpreted as an observer. This theorem is important because it
allows us to substitute observationally equivalent system components without
affecting the overall system behaviour. A refinement-based design methodology
can therefore be safely adopted to construct circuits.

6.2 The Power of Observation

Our notion of behavioural equivalence is very strong because observers can in-
spect and modify signals at every delta step. Behaviourally equivalent processes
must exhibit the same behaviour at every delta step. Consider the following pro-
cesses:

p3 ≡ while true do (wait on {i}; o ⇐ ¬i)
p4 ≡ while true do (wait on {i}; wait for 0; o ⇐ ¬i)
p5 ≡ while true do (wait on {i}; o ⇐ ¬i; wait for 0)

o1 ≡ i ⇐ ¬i; wait for 0; i ⇐ ¬i; wait for 0; success ⇐ (o = i)

o2 ≡ i ⇐ ¬i; wait for 0; i ⇐ ¬i; wait for 0;

wait for 0; success ⇐ (o 6= i)

o1 distinguishes p3 and p4 so that p3 6≃ p4. Perhaps unexpectedly, p3 6≃ p5 al-
though wait for 0 seems not to delay any statements that modify the state. It
does, however, affect the rate with which it is able to consume its inputs.

These observations might lure us to the mistaken belief that delta actions
have a temporal significance. This is not so; delta actions represent internal com-
putation steps of the simulation in the convergence to a fixed point or steady

state. Inputs to a circuit remain constant during one time step (from one T
action to the next) and outputs should only be read when they have stabilised
(i.e. at T actions). Observers may be thought of as emulating the environment
and this suggests limiting the expressiveness of observers in this way. But there
is no simple solution: if we circumscribe the power of observers we must make
a corresponding restriction to programs, assuming we wish observational equiv-
alence to be a congruence (see Theorem 4). Any effort to excise delta delays
reduces the vhdl subset to a trivial language. More work is needed to find a
coarser and more useful notion of observation.

Although we have not yet proved this formally, it is clear that bisimulation
outlined in Definition 2 is more discerning than our testing framework because
observers cannot always reconstruct when (delta) time advances. (Consider a
δ action caused only by a wait for 0 statement; the state does not change
and the application of the delta rule passes unnoticeably. Conversely, all the
information that is available to an observer can also be used by bisimulation, so
that bisimulation is strictly more powerful.)

6.3 Observing Processes Or Sequential Programs

Parallelism in vhdl is uncomplicated because only complete sequential programs
can be executed in parallel. Thus our notion of observation lies at the process
level (whole sequential programs, i.e. →pgm). This contrasts with the approach of
De Nicola and Pugliese who give an observational semantics for the asynchronous
concurrent language Linda in [5]. In Linda concurrency can be introduced at
the level of individual statements through explicit process creation (eval) so
that a more refined notion of observation is necessary and programs are tested
at the level of sequential program statements. As a result the composition of
observer and observee is more involved: in addition to the distinguished signal
success special start and stop signals are needed. It is not clear if a similarly
detailed notion of observation can easily be introduced for our semantics. We
cannot simply regard our observers as (partial) sequential programs because wait
statements cause an interaction of statement and program semantics. As defined
at present ≃ is not a congruence at the →ss level because an observer cannot
modify the past behaviour of programs. In particular, the problem is caused by
histories of signals: ss1 ≃ ss2 6⇒ wait for n;ss1 ≃ wait for n;ss2.

7 Conclusions

Of research into vhdl the operational semantics by van Tassel [6, Chapter 3] is
closest to ours; but it omits arbitrary wait statements simplifying the semantic
model considerably. Formalisation in terms of petri nets by Olcoz [6, Chapter 5]
and Börger et al. [6, Chapter 4]) are not compositional so that properties can
be proven of whole programs only — this is a severe practical limitation. The
functional semantics of Fuchs and Mendler [6, Chapter 1] and Breuer et al. [6,

Chapter 2], as well as the denotational semantics by Breuer et al. [3] and stream-
based semantics [16] do not suffer from this defect but are less intuitive than
an operational approach. However, because they are more abstract than our
semantics reasoning with them may well be easier.

We have presented a semantics for vhdl subset that contains the principal
features of one-entity vhdl programs, to be precise: delta delays, arbitrary wait
statement, zero delay scheduling, parallel processes, and local variables. Resolu-
tion functions are also included, but they must be commutative. Of the various
methods that have been used to define vhdl formally we believe ours to be one
of the simplest and most intuitive. That the semantics correctly reflects the in-
formal understanding of vhdl is supported by the fact that the properties that
we proved are “common knowledge.” Monogenicity of the semantics is important
in theory and practice. Using the testing theory to give an observational seman-
tics for a language such as vhdl has been fruitful. Our notion of equivalence
on programs that is a congruence is an essential ingredient of any compositional
method, be it a formal theory of correctness or an informal design tool.

Future work includes a cleaner characterisation of bisimulation and its rela-
tion to observational equivalence. The operational semantics could be extended
by including (function) declarations to bring resolution functions into the lan-
guage, and allowing multiple entities. Some small examples are presented in the
technical report version of this paper; they demonstrate that practical use of our
semantics is difficult.

We thank Rosario Pugliese for many useful discussions about the application
of process algebraic methods to our vhdl semantics, Flavio Corradini for proof
reading this paper, and the referees for valuable suggestions.

References

1. Dominique Borrione, Laurence Pierre, and Ashraf Salem. PREVAIL: A proof envi-
ronment for VHDL descriptions. In P Prinetto and P Camurati, editors, Advanced

Research Workshop on Correct Hardware Design Methodologies, pages 163–186.
ESPRIT CHARME, North Holland, June 1991.

2. P T Breuer, L Sanchez, and C Delgado Kloos. Clean formal semantics for VHDL.
In European Design and Test Conference ’94, 1994.

3. P T Breuer, L Sanchez, and C Delgado Kloos. A simple denotational semantics,
proof theory and validation condition generator for unit-delay VHDL. Formal

Methods in System Design, 7(1–2), July 1995.

4. R De Nicola and M C B Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1994.

5. Rocco De Nicola and Rosario Pugliese. Testing Linda: Observational semantics
for an asynchronous language. Rapporto di Ricerca SI/RR-94/06, Dipartimento di
Scienze dell’Informazione, Università di Roma, Italy, November 1994. To appear
in Structures in Concurrency Theory (STRICT’95).

6. Carlos Delgado Kloos and Peter T Breuer, editors. Formal Semantics for VHDL,
volume 307 of Kluwer International Series In Engineering And Computer Science.
Kluwer Academic Publishers, March 1995.

7. Ivan V Fillippenko. VHDL verification in the state delta verification system
(SDVS). In 1991 International Workshop on Formal Verification in VLSI Design,
January 1991.

8. K G W Goossens. Reasoning about VHDL using operational and observa-
tional semantics. Rapporto di Ricerca SI/RR 95/06, Dipartimento di Scienze
dell’Informazione, Università di Roma “La Sapienza”, April 1995.

9. The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY10017 USA. IEEE Standard VHDL Language Reference Manual,
IEEE std 1076-1987 edition, 1988.

10. The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY10017 USA. IEEE Standard VHDL Language Reference Manual,
IEEE std 1076-1993 edition, 1993.

11. Robin Milner. Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall, 1989.

12. D M R Park. Concurrency and Automata on Infinite Sequences, volume 104 of
Lecture Notes in Computer Science. Springer Verlag, 1980.

13. Gordon Plotkin. A structural approach to operational semantics. Technical Report
FN-19, Computer Science Department, Aarhus University (DAIMI), 1981.

14. Simon Read. Formal Methods for VLSI Design. PhD thesis, Department of Com-
putation, University of Manchester, 1994.

15. Ashraf Salem and Dominique Borrione. Formal semantics of VHDL timing con-
structs. In Euro-VHDL Stockholm, September 1991.

16. L Sanchez, C Delgado Kloos, and P T Breuer. Stream semantics for VHDL: An
example. In Workshop on Design Methodologies for Microelectronics and Signal

Processing, 1993.
17. Gabriele Umbreit. Providing a VHDL-interface for proof systems. In EURO-DAC,

pages 698–703, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, CA 90720-
1264, September 1992. IEEE Computer Society Press.

18. Philip A Wilsey. Developing a formal semantic definition of VHDL. In J Mermet,
editor, VHDL for Simulation, Synthesis and Formal Proofs of Hardware, pages
243–256. Kluwer Academic Publishers, 1992.

