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Abstract

Hardware description languages (hdls) are a notation to describe behavioural and
structural aspects of circuit designs. We discuss why it is worthwhile to give a formal
semantics for an hdl, and why we have encoded such a semantics in a proof system. We
outline the subset of the hardware description language ella

1 which we use, its formal
structural operational semantics, and its embedding in the higher-order logic proof sys-
tem Lambda

2. Finally we discuss applications of this approach which include the ability
to prove results about the simulation mechanism, formal symbolic simulation, various
synthesis techniques, and transformational design.
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1 Structure and Behaviour in Hardware Verification

Hardware description languages (hdls) are a notation to describe designs of hardware.
There is a wide spectrum of hdls [23]; examples are ddl [8], ella [27], and vhdl [24].
Hardware description languages are used extensively in industry. However, academic re-
search into the formal verification of hardware [32] predominantly uses notations based on
higher-order logic [17]. This diminishes the chances of industrial adoptation of verifica-
tion methodologies based on academic research. By providing a formal basis for a widely
used hdl, and building a methodology which is compatible with it, we hope this barrier
will be reduced. In the following we give our perception of concepts such as structure and
behaviour which play an important rôle in hardware design and description. We argue
why the use of a formal semantics for an hdl is beneficial.

1
ella is a trademark of the Secretary of State for Defence, United Kingdom.

2
Lambda is a product of Abstract Hardware Limited.



The rôle of hdls has changed over time. The function of early hdls was to document
hardware implementations; only structural information was needed to describe compo-
nents and their interconnections. The realisation that these hdl descriptions could also
be used to simulate the hardware component which they documented was a conceptually
very important step.3 Simulation entails providing a circuit description with input stim-
uli, and computing its outputs according to some model. A behaviour was now associated
with the structural description. The use of hdls as documentation was vastly expanded to
include design and debugging. To aid this new rôle behavioural language constructs were
added to allow circuits to be described in terms of their behaviour only; no implemen-
tations is implied. (Note that conventional programming languages may be considered
(and used) as a behavioural subset of an hdl because no hardware implementation is
specified by a conventional program – it exhibits an input-output behaviour only.) hdls
could now be used throughout the design process. During the early stages in the design
process designs are given in an abstract, behavioural manner, with no implementational
bias. In later stages a design would consist of structural descriptions, reflecting the actual
hardware implementation. In both cases, simulating the hdl description, should give the
same behaviour.

A large body of research exists in the area of formal semantics for conventional pro-
gramming languages [9, 22, 29, 26]. Formal semantics are essential to be able give a clear,
unambiguous definition of a programming language. Properties about individual pro-
grams, as well as properties of classes of programs may be proven using formal semantics.
As we saw previously, a conventional programming language may be regarded (somewhat
unfairly) as the behavioural subset of a hardware description language. However, due to
the prevalence in academia of notations other than industrial hdls, formal semantics for
hdls were not considered until recently [3, 12, 28, 31, 16]. We now explain how hardware
has been described in most of the hardware verification literature, and why this has ob-
fuscated the boundary between the structure and behaviour of a circuit. The use of an
hdl with associated formal semantics, in contrast, clarifies these issues [13].

We show how a simple NAND gate may be described using an hdl and using higher-
order logic to illustrate problems with the latter approach. Using the hardware description
language ella [27] two NOT gates, an AND gate, and an OR gate may be described (with
minor variations) as follows:

FN NOT (BOOL: x) -> BOOL: CASE x OF true: false ELSE true ESAC.

FN SLOWNOT (BOOL: x) -> BOOL: DELAY (NOT x).

FN AND (BOOL: x y) -> BOOL:

CASE (x,y) OF (true,true): true ELSE false ESAC.

FN OR (BOOL: x y) -> BOOL:

CASE (x,y) OF (false,false): false ELSE true ESAC.

3The behaviour of an hdl description and the corresponding implementation in hardware are related
through a model of hardware. Features which the model abstracts away from (for example by regarding
data signals as boolean values) cannot be reasoned about. If the model is unrealistic or incorrect, the
behaviours associated with an hdl program are also invalid [6]. Prior to simulation of hdl descriptions
no model was required.



All these gates are described in terms of their behaviour; they are primitive components.
In contrast consider two different implementations of a NAND gate:

FN NAND1 (BOOL: x y) -> BOOL:

BEGIN

MAKE NOT: not.

MAKE AND: and.

JOIN (x,y) -> and.

JOIN and -> not.

OUTPUT not

END.

FN NAND2 (BOOL: x y) -> BOOL:

BEGIN

MAKE OR: or.

JOIN (NOT x,NOT y) -> or.

OUTPUT or

END.

Whereas the NOT, OR, and AND gates are described in terms of their behaviour, the NAND

gates are defined structurally, by combining smaller components. Their behaviour can
be derived from the behaviour of their subcomponents. In particular, NAND1 uses a NOT

gate and not the slower, but functionally equivalent, implementation SLOWNOT. This is
structural information. Moreover, NAND1 and NAND2 are exhibit the same behaviour but
have a different internal structure.
Using higher-order logic, an AND gate may be described as follows [17]:

⊢ and(x, y, z) = (z = x ∧ y)

It defines a three-place relation between booleans such that the output z is the boolean
conjunction of the two inputs x and y. It may be composed with a similarly defined NOT

gate as follows:
⊢ ∃z. and(x, y, z) ∧ not(z, a)

Although this looks conspicuously like the structural description NAND1, it is in fact a
behavioural description, composed of the two very simple relational descriptions and and
not. To see why this description is not sufficiently discerning, consider the equivalent to
the NAND2 description:

⊢ ∃a, b. not(x, a) ∧ not(y, b) ∧ or(a, b, z)

However, we can prove trivially that

⊢ ∃z. and(x, y, z) ∧ not(z, a) ↔ ∃a, b. not(x, a) ∧ not(y, b) ∧ or(a, b, z)

Thus two so-called structural descriptions in higher-order logic may be proven identical,
although they are intended to denote structurally different circuits. This clearly shows
that using logic in this manner to give structural hardware descriptions is inadequate.



The reason why a hardware description language does not suffer from the same prob-
lem is that we derive the behaviour of an hdl fragment using simulation (in the informal
case) or using its semantics (in a formal setting). Thus NAND1 and NAND2 describe two
structurally different circuits with the same (derived) behaviour.

Following the example of conventional programming languages we give a formal se-
mantics for a subset of the hardware description language ella. An outline of the “paper
semantics” of picoella (as our ella subset is called) is given in the next section. The
reasons for, and principles of embedding picoella in Lambda [11], the higher-order logic
proof assistant we use, are given in Section 3. Our work combines post hoc verification,
simulation, synthesis, and transformations in one framework, as described in Section 4.

2 picoELLA and Its Formal Semantics

The industrial hardware description language ella [27] is relatively small and has a clean
simulator model. Although it is possible to give direct semantics for most of the language
[2], we chose to use a minimal subset, called picoella, into which all of ella may be
translated. We will only give a flavour of this subset; for aspects such as undefined, or
‘don’t know’ values (?type below) consult [13, Chapter 3]. picoella is a very simple
functional language with the following abstract syntax:

pgm ::= TYPE decl IN pgm | expr

decl ::= type = cons1 | . . . | cons
n

| type = type1 ∗ type2

expr ::= const | name | expr [1] | expr [2] | (expr1, expr2) |

LET name = expr1 IN expr 2 | LET INIT const REC name = expr1 IN expr2 |

IF expr1 MATCHES pat THEN expr 2 ELSE expr3 | DELAY (const , expr)

pat ::= type | cons | (pat1, pat2) | pat1|pat2

const ::= ?type | cons | (const1, const2)

Type definitions declare a number of constructors, or a non-recursive binary tuple type.
Patterns pat are used in the IF statement which is a generalised multiplexor. If the
output of circuit expr 1 matches pattern pat the IF delivers the result of expr2, else that
of expr3.

4 The LET construct defines a local name for the result of circuit expr1. Use
of name in expr2 corresponds to a fan-out of the signal, whereas substituting expr1 for
all occurrences of name in expr2 would duplicate the hardware component expr1. The
recursive LET allows name to be used in expr1 too. This corresponds to feedback, an
example of which is given below. The term INIT const ensures unique typing and guar-
antees that all simulations terminate. A discrete and linear time base, isomorphic to the
natural numbers, is introduced into the language by the DELAY construct. DELAY(ct,e)

is a unit delay of the circuit e. The result of evaluating e at time t will be output by
DELAY(ct,e) at the next time step t + 1. At the current time t, the value ct is the result.
This shows that the state of the delay (i.e. the constant ct) is explicit in the descrip-
tion of the delay. picoella dispenses with a memory or store which other languages

4Actually, if the output of expr1 is insufficiently defined to decide between the two branches an
undefined value is output. This is crucial for the semantic model [13, Chapter 3].



require to save the state from one time step to the next. Only an enviroment for use
within one time step is needed. However, as a result of the explicit representation of the
state, a new circuit description must be evaluated at each time step. The result of an
evaluation consists therefore of a value output together with a description of the circuit
at the next time step. The type of the simulation (or dynamic semantics) is therefore
(environment × expression) → (value × expression). State transition functions of state
machines have a similar type (value × state) → (value × state), as do process algebras
such as ccs [25].

As an example, consider the following circuit which implements a parity checker. It
returns hi at time t + 1 if there have been an even number of hi’s on the input signal
input during the closed time interval [0, t]. At time zero it outputs hi.

LET INIT ?bit

REC xor = DELAY (hi, IF (input,xor) MATCHES (hi,lo)|(lo,hi)

THEN hi ELSE lo)

IN xor

Few hdls and programming languages have a precise definition. In practice the sim-
ulator or compiler serves as this definition, but this leads to problems when different
implementations present conflicting outputs. A formal semantics may be used to give
a mathematical description of the behaviour of an hdl, i.e. how a simulator should be-
have.5 General properties, such as termination of any simulation within a finite number
of steps, may be proved about the semantics (and hence the behaviour of conforming
simulators). Some hdls that have been formalised include Funnel [28], silage [16],
and various subsets of ella [12, 1, 2, 21], and vhdl [31, 30]. The remainder of this
section describes the semantics for picoella [13] which takes the form of a structural
operational semantics [26]. It comprises a static semantics describing which programs are
well-typed, and a dynamic semantics defining the run-time behaviour of well-typed pro-
grams. We will not discuss the static semantics here; it suffices to say that it is relatively
straightforward. picoella dynamic semantics rules (17 in total) fall into two categories;
those dealing with time, and those dealing with the evaluation of expressions within one
time step. The reduceSeqCons rule belongs to the first class:

Γ′ ⊢ exprt ⇒ ot, exprt+1 tl, Γ ⊢ exprt+1 ⇒ tl′, exprt+N

it :: tl, Γ ⊢ exprt ⇒ ot :: tl′, exprt+N

Here exprt is the program at time t, Γ the environment in which the program runs,
and it :: tl the input stream. Γ′ is Γ with input value it adjoined (this will be made
more precise later). This rule shows that at time t we run the program exprt with input
value it in environment Γ′. The output value ot is added to the output stream, and the
new program exprt+1 is evaluated with the remainder of the input stream. As explained
previously, since the state of the circuit is explicit in its description, we need to evaluate

5Note that the implementation of the simulator may use any model, as long the input–output relation
obeys the definition. The semantic definition should be clear and simple, not necessarily efficient. In
fact, in [14] we show how the semantics may be used as a simulator.



a new circuit at every time step. A typical member of the second category of rules is the
reduceTuple rule:

Γ ⊢ expr1 ⇒ v1, expr′1 Γ ⊢ expr2 ⇒ v2, expr′2
Γ ⊢ (expr1, expr2) ⇒ (v1, v2), (expr′1, expr′2)

To evaluate a tuple in environment Γ, both subexpressions must be evaluated in the same
environment. The rule for the delay shows the use of the embedded state:

Γ ⊢ expr ⇒ v, expr′

Γ ⊢ DELAY (c, expr) ⇒ c, DELAY (v, expr′)

The output from the delay is its latched value c. The new description of the delay, to
be evaluated at the next time step, contains the output v from expr at the current time
step. In other words, it has latched this clock-cycle’s output.

Some properties of the semantics are discussed at the end of the next section.

3 Embedding picoELLA in Lambda

The semantics described above, has been encoded in the Lambda proof system [11],
which implements a polymorphic constructive higher-order logic of partial terms.6 A large
subset of the functional language ml [19] is used to define new data types and operations
on data types within the logic. The soundness of the system cannot be compromised
through new definitions. Lambda returns a number of rules axiomatising the new ml

data types, such as existence of constructors, (in)equality rules, and a structural induction
principle. Rules for functions include rewrite rules, which may be used to define derived
rules and tactics. Tacticals can be used to combine tactics into rewrite strategies, symbolic
simulation commands, etc.

The key to the embedding is the explicit encoding of hdl terms as objects in the
proof system. It allows manipulation of circuit descriptions by functions and relations,
and quantification over circuits, e.g. ‘for all circuits c which are well-typed P (c) holds’,
‘there exists a circuit c which implements specification S’. Indeed, the purely structural
terms are given a meaning operationally, by the function reduce overleaf, which encodes
the dynamic semantics. (An alternative approach is to give structural terms a meaning
directly, through a denotational or axiomatic semantics. However, an operational defi-
nition allows reasoning about the simulator mechanism, and not just the input-output
behaviour. For a detailed discussion see [15].) In the following, we first define a represen-
tation of constants and circuit expressions, then the semantic function which interprets
them. Some important properties of the semantics are discussed towards the end of this
section.

To represent picoella constants the ml definition system was used to define the data
type const:

datatype const = Cons of natural * natural |

CoTuple of const * const;

6Note that we use Lambda version 3.2. More recent versions uses a different logic.



Cons(i,t) encodes the ith constructor of type t. Cons(0,t) represents ?t which is the
undefined, or ‘don’t know’ value of type t. A constant is therefore a constructor or
bottom value, or a tuple containing constants. The pat data type defined similarly to
encode patterns of the IF statement. The type representing expressions or circuits is
defined as follows.

datatype expr = Const of const |

Tuple of expr * expr |

Let of expr * expr |

Var of natural |

Delay of const * expr |

If of expr * expr * expr * pat |

Index1 of expr |

Index2 of expr |

LetRec of const * expr * expr;

Note that no constructor is present for TYPE. Types are dealt with on a meta-level,
i.e. using Lambda’s facilities, rather than at the expr object level. To embed the LET

operator the de Bruijn encoding of lambda abstractions is used [7]. The bound variables
of lambda expressions are encoded as natural numbers indicating the distance (measured
in intervening lambdas) away from the defining lambda. Thus λx.λy.(x, (x, y)) a b would
be encoded as λλ(1, (1, 0)) a b. In picoella this corresponds to embedding
LET x = a IN LET y = b IN (x,(x,y)) as
Let (a, Let (b, Tuple (Var 1, Tuple (Var 1, Var 0)))).

As explained two pages back, the type of the dynamic semantics, defined by the
reduce, is reduce: const list -> expr -> (const * expr), where const list represents
the value environment.

fun reduce l (Let (e1, e2)) =

let val (c1, f1) = reduce l e1 in

let val (c2, f2) = reduce (c1::l) e2 in

(c2, Let (f1,f2))

end end |

reduce l (Var n) = (elem l n, Var n) |

reduce l (Delay (c, e)) = (c, Delay (reduce l e)) | ...

The evaluation of the LET statement involves reduces the defining expression, and pushing
the value result on the stack l (cf. storing it in the environment Γ). Evaluating a name is
implemented by a lookup in the environment Γ in the dynamic semantics, and accessing
the correct element in the stack l in the embedding.

Using these definitions and derived properties, the operational semantics rules de-
scribed at the start of this section may be deduced within the proof system. For example,
the (pretty-printed) rule reduceSeqCons below corresponds to reduceSeqCons shown pre-
viously.7

7All proof system output will be pretty-printed: for example, prefix constructors such as Let(e,f)will
be shown infix LET e IN f . Rules whose name is shown in the typewriter font denote the embedded
rules, those in roman font the ‘paper’ rules.



⊢ (instream , env ⊢ circ1 ⇒ (outstream ,circ2 ))

⊢ (i1 :: env ⊢ circ ⇒ (o1 ,circ1 ) : t )

--------------------

⊢ (i1 :: instream , env ⊢ circ ⇒ (o1 :: outstream ,circ2 ))

To evaluate a program circ with a non-empty input stream i1 ::instream , the head of
the input stream is pushed onto the environment env . This corresponds Γ′ in the paper
rules. circ is then processed within this time step. The remainder of the input stream is
then evaluated using the new circuit circ1 . Finally, the output o1 is prepended to the
resulting output stream. reduceDelay shows how the static and dynamic semantics are
used in the same rule:

⊢ initial : t

⊢ (env ⊢ circ ⇒ (out ,circ’ ): t )

--------------------

⊢ (env ⊢ DELAY (initial ,circ ) ⇒ (initial ,DELAY (out ,circ’ )): t )

The first premise expresses the typing constraint that the constant initial must have
the same type t as the expression circ . The second subgoal is a shorthand for both a
dynamic semantics inference ( ⊢ ⇒ ( , )) and a static semantics inference ( ⊢ : ).

It is important to realise that circ , t , etc. are meta-variables. The reduceDelay

rule is really a rule schema, which may be instantiated in an infinite number of different
ways. When it is applied to a particular DELAY statement such as DELAY (hi,Var 3),
initial and circ , are unified with hi and Var 3 respectively. This unification is reflected
in every place where the variables occur in the rule. The unification works both ways so
that meta-variables in a rule are specialised so that the rule applies to the current goal (as
in the example below). But meta-variables in the goal may also be made more concrete
for the rule to apply. We will see examples of this later on. In Lambda meta-variables
may be flexible or rigid. The former are used to stand for some term to be determined
as the proof proceeds, the latter require proofs to be schematic in the variable. Rigid
variables ensure that a general result, rather than an instantiation of the result, is proved.

Properties of the Semantics

To increase the confidence in the correctness of the encoding of the semantics in the proof
system we proved a number of properties about the embedded semantics which we also
proved for the ‘paper’ version. These properties are of interest because they hold for all
circuits which are well-typed (according to the static semantics). We proved that the
reduction function is total, i.e. for all inputs an output will be produced. This is a non-
trivial observation because feedback loops need not be broken by delays, which allows
circuits which are meta-stable. Consider a NOT gate with its output fed into its input:

LET INIT ?bit

REC loop = IF loop MATCHES lo THEN hi ELSE lo

IN loop

If the wire loop carries the signal hi, the output of the NOT gate will be lo. Thus the
input changes to lo, followed by a change of output to hi, which was our starting point.



Similar oscillating behaviour is obtained for an initial input lo. The semantic model used
for picoella results in the output ?bit, which is the undefined, or ‘don’t know’ value,
reflecting accurately the intuition that the output is not stable. In fact, the semantics
computes the least fixed point solution of the circuit in a finite number of steps. It is
important to realise that these are results concerning all circuits, not particular instances.
The totality result depends on the monotonicity of the dynamic semantics; if we have more
information about the input of a circuit, we can say more about its output. Loosely, if the
input becomes more defined, the output becomes more defined. The reduction function
also preserves the ‘shape’ of the program (an adder does not become a multiplier after
some time!) In other words, only the contents of delays changes over time. A detailed
account of the embedding may be found in [12, 13].

4 Applications

Explicitly separating the structure and behaviour of circuits leads not only to a concep-
tually clearer picture, it also permits a number of different applications to be combined
in one overall framework. Consider the following diagram: Starting at ‘formal hdl de-

formal HDL

descriptions

simulation

results

description

of behaviour or properties

specifications

counter

examples

formal

semantics

formal
synthesis

formal circuit

optimisations

S
So �

�/

layout

generators

handcrafted

designs

synthesis

tools

?? HHHHHHHHHHHHHHHY

-

@
@

@
@

@
@

@
@

@@R����������

HHHHHHHHj -

prove correct

proof system

simulation....

....

export

import

scriptions’, we can derive properties about the formal semantics in the proof system.
However, it is also possible to derive properties about individual circuits, which can then
be used, for example, to show that they satisfy their specifications. In the remainder of
this section we discuss three other applications: formal symbolic simulation, synthesis of
circuits both interactively and using functions, and transformations of hardware.



4.1 Formal Symbolic Simulation

We can derive operational semantics rules such as reduceSeqCons and reduceDelay

shown previously from the definition of the semantic function reduce. These rules may
be used to check semantic derivation trees: given a circuit, input, and output, find a
corresponding theorem. This is not terribly useful, because we have to supply the output
from the start. However, recall that the Lambda proof system has meta-variables which
may be flexible. Flexible meta-variables may be instantiated or specialised throughout
a proof. Thus, rather than trying to prove, for example, the following theorem (an AND

gate with input (hi,lo) outputs lo):

--------------------

⊢ (env ⊢ IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo

⇒ (lo,IF (hi, lo) MATCHES (hi,hi) THEN hi ELSE lo) : Type 1)

which has the input (hi,lo) and the output (lo,IF (hi, lo) MATCHES (hi,hi) THEN

hi ELSE lo) hard-wired in, we derive instead a more general rule with a symbolic output
(out ,newcirc ). We also introduce an abbreviation AND which is parametrised on the
input circuit circ .

⊢ out == (case match (hi,hi) out 1 of uu => bit | tt => hi | ff => lo)

⊢ (env ⊢ circ ⇒ (out 1,circ’ ) : TyTuple (Type 1,Type 1))

--------------------

⊢ (env ⊢ AND#(circ ) ⇒ (out ,AND#(circ’ )) : Type 1)

> val reduceAND = popGoal();

val reduceAND = ? : rule

The semantic derivation for an AND gate with a general input has been collapsed into
one derived rule reduceAND. It states that to evaluate an AND gate, one has to evaluate
the circuit circ which supplies its input (the first premise), and then has to check which
branch of the IF statement is taken (the second premise). By deriving this sort of rule
first for simple gates, then for components built from these gates, one can build ’skeleton
rules’, and computations can be speeded up greatly.

To return to our motivation for this rule: to compute the output of an AND gate with
input (hi,lo) we apply the above rule schema to the goal

env ⊢ AND#((hi,lo)) ⇒ (out ,newcirc ) : t

where out , newcirc , and t are flexible meta-variables (i.e. they may be instantiated with
other terms). Indeed, applying reduceAND to the goal, and discharging the two premises
will specialise out , newcirc , and t to lo, AND#((hi,lo)), and Type 1 respectively.
While this is interesting, it would be much faster to use a real simulator for the hdl to
simulate fixed value inputs. Consider, however, that for both (lo,lo) and (lo,hi) the
output will be lo. In a conventional simulator we would need to simulate the AND gate
twice, but using the proof system we can derive the output lo from the input (lo,x),
where x is a proof system variable. The fact that we can obtain an output without
instantiating x with lo and hi is very important. It removes the need to exhaustively

simulate the circuit: we can use the symbolic capabilities of the proof system to cut
down the number of inputs or test vectors. Exhaustive simulation is not feasible for



large circuits because the number of possible input patterns grows exponentially with the
number of inputs. Symbolic variables such as x are not to be confused with ‘don’t care’
values, which are part of the value domain. Although in this particular case ‘don’t care’
values could have been used to the same effect, the former may be arbitrary formulae,
introducing relationships between inputs, e.g. AND#(x,¬x).

If we generalise this even further we can leave the input completely abstract (in say)
to derive a symbolic output:

(if in = (hi,hi) then hi else lo,AND#(in ))

(This holds only if the input is restricted to values without ‘don’t know’ elements.) The
computation has been pushed completely into the answer which is not possible with
‘don’t care’ values. We could do this for the complete circuit, but the resulting term
would probably be as complicated as the circuit description itself. We have progressed
from simple values as inputs and outputs, via ‘don’t care’ values [20], to symbolic values
and formulae [4, 14].

While current symbolic simulators can handle the above examples, the use of a proof
system becomes essential when we deal with parametrised circuits, and circuit specifica-
tions. The AND gate, as defined above, takes its input circuit as a parameter. This is a
trivial example of the use of plug-in components, or abstract hardware. To simulate a
circuit which contains a hole or plug-in component, the input-output behaviour of the
missing subcomponent needs to be supplied. The specification of the circuit, which should
be available, can be used for this purpose. In fact, this strategy allows different people to
work on one design in simultaneously; to simulate the whole design, parts of which may
not be finished yet, specifications of the missing subcomponents are used. When a part
has been completed it must be proved to satisfy its specification. After this has been done
using the proof system, the part may be inserted into its context in the larger design.
However, as the proof of correctness implies that the specification describes the behaviour
of the implementation8 it makes sense to continue to use the specification for simulation.
In general, a specification will state the behaviour at a higher level of abstraction (for
example, an adder is specified as adding two natural number, rather than two bit vectors).
Thus, instead of computing an addition using the bit vectors in the implementation, the
bit vectors are abstracted to natural numbers which are then added using natural number
addition and the result converted back to a bit vector. In other words: the sum would
be computed by the expression bitsof ((natof x + natof y) mod 2N), where natof is the
abstraction function, and bitsof its inverse. This technique should substantially speed
up simulations. Although mixed-level simulators handle part of this functionality, they
cannot guarantee that the high and low-level descriptions, interpreted as the specification
and implementation respectively, have the same behaviour (other than through exhaustive
simulation, which is not acceptable.) Moreover, the specifications used in the proof system
need not be restricted to hdl programs: they could be any term in the logic with the
appropriate result type, possibly non-algorithmic or non-executable.

8The relationship between implementation and specification is probably more subtle than this, but
the argument remains the same.



4.2 Formal Circuit Synthesis

Two distinct types of synthesis are possible in the proof system: functions which generate
correct hardware [3], and interactive synthesis methodologies.

Verified Hardware Generators

We can write functions which manipulate hardware descriptions: we have already encoun-
tered the dynamic semantics function reduce. Consider the following function which,
given a natural number N , returns the description of an N bit adder.

fun nadd onebitadder (S 0) x = onebitadder x |

nadd onebitadder (S (S n)) x =

LET x IN (* (((xN+1, x), (yN+1, y)), c0) *)

LET nadd onebitadder (S n)

(((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]) IN

LET onebitadder (((Var 1)[1][1][1], (Var 1)[1][2][1]),

(Var 0)[2]) IN

(((Var 0)[1], (Var 1)[1]), (* sum *)

(Var 0)[2]) (* carry *);

Unfortunately, due to the sparse nature of picoella, circuit descriptions are not always
very readable. nadd: (expr -> expr) -> natural -> expr -> expr is a partial func-
tion: there is no such a thing as a zero bit adder. A one bit adder with input ((x0, y0),

c0) uses the full adder component onebitadder, on which nadd is also parametrised. Am
N+1 bit adder with input (((xN, x), (yN, y)), c0) uses an N bit adder with input
((x, y), c0) connected to a full adder with input ((xN,yN),cN).

The most important aspect of hardware generating functions is that they may be
proven correct. That is, it is possible to prove a correctness statement for all word sizes:

∀c. FULLADDER SPEC#(c) →
∀N > 0. ∀x, y, c, s, c′, e. (⊢ nadd c N ((x, y), c) ⇒ ((s, c′), e)) →

NBITADDER SPEC#(N, x, y, c, s, c′)

Thus, given a correct full adder c, all N bit adders generated by nadd using it, are
guaranteed to be correct.

Interactive Synthesis

A different approach to hardware synthesis is to provide a methodology for interactively
constructing correct hardware. A number of valid design rules are given, and a circuit is
built using these rules only. In [18] hardware is described in term of higher-order logic, but
their approach can also be used with hdl descriptions. Fourman et al. [10] also synthesise
hardware interactively, but use flexible meta-variables to represent circuits which are still
to be refined, and are therefore not limited to a fixed set of design rules. This work uses
the Lambda system and can also be adapted to use hdl descriptions as the underlying
representation for circuits.



Operational semantics rules such as reduceDelay of Section 3 can be used to syn-
thesise circuits. Initially the circuit is a flexible meta-variable: the circuit is completely
unconstrained. Applying operational semantics rules does not only restrict outputs, it
also specialises the circuit. For example, applying the reduceTuple to the circuit circ

forces it to become a tuple (circ 1,circ 2), with a tuple (out 1,out 2) as output. Suc-
cessively applying operational semantics rules simultaneously constructs the circuit and
its output. To make this approach useful, sufficiently high-level building blocks must be
provided. To construct a circuit in a top-down fashion (i.e. successively refine subcom-
ponents) rules are applied in a goal-directed, or backward manner. Conversely, forward
rule application corresponds to bottom-up synthesis [13, Chapter 5]. The results of both
top-down and bottom-up synthesis must be verified after they have been designed, in
contrast to [18], and to lesser extent [10], where a design and its proof of correctness are
constructed simultaneously.

4.3 Correct Hardware Optimisations

Hardware designs, whether originating from synthesis functions or hand designs, can often
be optimised by applying transformations. Rather than trying to produce an efficient
design from the outset, circuit optimisations can be used effectively to massage an existing
design to produce a smaller layout, faster chip, etc. Optimisations can be treated formally
in our framework: transformations can be rule-based [5], or functions can be written to
detect certain patterns and replace them by others [13]. Both forms can be verified by
showing that the behaviour of a circuit is either unchanged by the optimisation, or more
favourable in some sense; e.g. lower latency or higher throughput. If a transformation
changes an aspect of a circuit description which is not addressed in the semantics (e.g.
layout area) the two descriptions will be behaviourally equivalent, even though one version
of the circuit will be preferable to the other. Other aspects, such as latency, will be
derivable using the semantics. In this case an optimisation will change the circuit’s
behaviour but in an acceptable fashion. It is possible to base an entire design style upon
transformations, as described in [5].

5 Conclusions

Hardware description languages are widely used to aid the design process. A mathemat-
ical basis for hdls allows formal methods, implemented in proof systems, to be applied
to hardware design and description. Our approach clarifies important issues concern-
ing behaviour and structure which have not been addressed properly in formal hardware
verification. The definition of a formal semantics for a subset of the hardware descrip-
tion language ella, and its encoding in the Lambda proof assistant show how various
methodologies can be integrated. The ability to prove properties of the simulator mech-
anism for the hdl, symbolic and mixed-level simulation, various types of synthesis, and
transformations of hardware have all been treated formally. A number of practical issues
have to be addressed; although ella may be translated into the picoella language, it is
too restrictive for more than toy examples, and verification of individual circuits tended to
be very slow. However, we believe that our aim, to find a suitable integrated methodology
for hardware design and verification using hdls, has been successful.
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