) ) ) .1
Structure and Behaviour in Hardware Verification
K. G. W. Goossens

Laboratory for Foundations of Computer Science, Department of Computer Sci-
ence,

University of Edinburgh, The King’s Buildings, Edinburgh EH9 3J7, U.K.

Abstract

In this paper we review how hardware has been described in the formal hard-
ware verification community. Recent developments in hardware description are
evaluated against the background of the use of hardware description languages,
and also in relation to programming languages. The notions of structure and be-
haviour are crucial to this discussion.

1 Introduction

Hardware has long been described using hardware description languages (HDLs).
More recently, in the field of hardware verification logic-based notations have been
used. In this paper we explore how the relationship between the structure and
behaviour of circuits has been perceived over time in the formal verification field.
The structure of this paper is as follows: we give our view of HDLs and simulation
prior to the advent of formal methods, then we comment on formal logic meth-
ods used to describe and reason about hardware. Connections with conventional
programming languages are also explored.

Hardware Description Languages and Simulation

The first réle of HDLs was to document hardware designs and facilitate commu-
nication between designers [14, 47]. It was soon realised, however, that these de-
scriptions could be used to simulate the realisations of the designs they described
[41]. The shift from the use of HDLs as documentation to their use as behavioural
descriptions is important. A structural description of the physical realisation of
the system has been replaced by the behavioural description of the design of the
system.

YA shorter version of this report is to appear in the proceedings of the workshop on Higher
Order Logic Theorem Proving and Its Applications, held in Vancouver, Canada, August 1993.



In the former situation there is an explicit understanding that every construct
in the language stands for, or represents, a real hardware component. (In fact,
in [72] an HDL was given a semantics in these terms. See also PMs [47].) In
the presence of simulation, however, an HDL description requires a model that
defines the behaviour of the basic components of the language. The gap between
an HDL description and the behaviour of one of its implementations is filled by
the simulation model, or model of hardware. Features that the model abstracts
away from cannot be reasoned about, and if the model is unrealistic or incorrect,
the behaviours associated with an HDL program are also invalid. While this has
always been clearly understood in areas such as device modelling where simulation
programs have been used extensively [71] and system-level modelling, this was not
always so obvious in formal hardware verification [48, 20].

A separate development addressed the need to document and design systems at
higher levels of abstraction. Behavioural notations such as 1SP [81], closer to
conventional programming languages, were defined for this purpose. By defini-
tion, this type of description does not relate to any particular implementation.
Simulation of higher-level descriptions is less contentious than that of structural
descriptions because the former do not relate to an underlying physical imple-
mentation via a model like the latter. Note that a design written in a behavioural
HDL can only be interpreted indirectly, using a simulator.

The two distinct developments of simulation and emphasis on behaviour, to-
gether with the ability to generate structural descriptions from low-level behavi-
oural hardware descriptions using synthesis tools, diffused the original intention
of hardware description languages: to document circuit implementations. Formal
hardware verification started from these premises, and it is therefore not surpris-
ing that structure and behaviour were not cleanly separated until recently.” In
the remainder of this section we review how hardware has been described in the
formal hardware verification community until recently. Some research explicitly
addressing these issues is then discussed.

Structure and Behaviour in Formal Hardware Verification

Where proof assistants have been used in the hardware verification community,
the following schema has generally been employed:

F implementation IMPLEMENTS specification

The relation IMPLEMENTS expresses that the implementation satisfies the specific-
ation. IMPLEMENTS has been interpreted as equivalence (< or =), and implication
(—). Although more sophisticated notions have been investigated [86, 84, 8], lo-
gical implication is used predominantly. Nearly always implementation is a relation

2 Although, of course, a major reason for formal hardware verification was the early realisation
that simulation alone would not be feasible for the verification of hardware [14]. Note that
mathematical logic may be considered as a sufficiently expressive behavioural HDL not to require
animation.



between input and output signals, describing the behaviour of the design under
consideration. This behavioural description of the implementation is commonly
regarded as a structural description. However, in purely structural descriptions
there is no behavioural information: and(x,y,z) means only that in the corres-
ponding place in the implementation there is ‘a piece of hardware commonly called
an AND gate.’

In the approach taken by researchers using the Boyer-Moore theorem prover
[13] the circuit description b-and z y already denotes a particular behaviour —
that normally associated with an AND gate. Consider the following representat-
ive example from [15] below. The description has been broken down into small
components that we associate immediately with their usual gate-level implement-
ations but the description remains behavioural.

(defn b-not a) (if (equal a F) T F)

(defn b-and a b) (if (and (boolp a) (boolp b))
(and (equal a T) (equal b T))
F)

(defn b-nand a b) (b-not (b-and a b))

The example consists of a composition of constants that already have an inter-
pretation. We insist on commencing with the uninterpreted syntax of a structural
language; behaviour is a secondary concept, and is provided in an explicit manner
[29, 30, 32]. This highlights the fundamental difference between the structure of
hardware and the behaviour of the hardware, when it is abstracted using a par-
ticular model. In the Boyer-Moore system only Brock and Hunt have used this
approach [15]. Their work is discussed in Section 4. Other Boyer-Moore work
provides interpretations such as the one given above; the hardware description is
a recursive function which is intended to model the behaviour of the design. The
use of tail recursion to represent the advance of time was introduced by Hunt
[45], and has generally been used by hardware verification research based on the
Boyer-Moore theorem prover. For a general account of this method see [64].

In higher-order logic proof assistants such as LAMBDA® [28] and HOL [36], nearly
all work has been in terms of similar direct interpretations [39, e.g. Section 4].
Exceptions are discussed later. Consider the usual HOL definition of an AND
gate [21]: F and(z,y,2) = (2 = @ A y). It defines a three-place relation between
booleans. It may be composed with a similarly defined NOT gate as follows:

F and(x,y,a) Anot(a, z)

Although this looks conspicuously like a structural description it is a behavioural
description, composed of the two very simple relational descriptions and and not.
Consider another implementation of a NAND gate:

F not(x,a) Anot(y,b) A or(a,b, z)

3LAMBDA is a product of Abstract Hardware Ltd.



These two descriptions are logically equivalent, but are intended to denote struc-
turally different circuits. The identical behaviour (at this level of abstraction) is
captured, but the structural distinction is lost. For this reason we introduce a
description that is truly structural:

I P(strand(x,y,a) && strnot(a,z))

There is a considerable difference between the first relational behavioural descrip-
tion, and this purely structural description. strand is an object denoting a purely
structural AND gate. && is an operator combining structural descriptions, with
result type structural. The purely structural description is not a truth valued
expression, like the relational descriptions: we have to say something about the
structural expression, which is what the context P indicates. For example, we
could give a meaning to the structural description using a semantics, synthesise
circuits, etc. See Section 4 for more details.

In our opinion a proper separation between the structural and behavioural
aspects of a circuit description is crucial. In the remainder of this section we
review research that has explicitly addressed this issue.

Research Addressing These Issues

In [40] Hanna and Daeche present the VERITAS hardware verification approach.
Theories are used to define new notions such as a theory of gate behaviours con-
taining basic gates. It is important to note that only behaviours are defined; there
is no mention of structure. For example, if wf is the type of waveforms,

F ANDBEHAV : characteristics — (wf x wf x wf) — bool = definition

is a parametrised relational definition of the behaviour of an AND gate. The
association of structure with behaviour can only be completed after a theory of
simple structures has been given. This theory defines the structural aspects of a
circuit. Elements of a type correspond to implementations; subtypes are used to
axiomatise input and output ports, components, and interconnections. Projection
functions are used to extract characteristics from structural entities. For example,
we use the function in; : andgate — inport to obtain the :¢th input port of an
AND gate. We associate an AND gate behaviour ANDBEHAV, as defined in the
gate behaviour theory, with a particular simple structure ¢ of type andgate as
follows:

F Vg : andgate. ANDBEHAV (characteristics g) (iny ¢) (iny g) (out g)

This axiom states that every purely structural AND gate g with its particular
properties, in this case characteristics g, input and output ports, satisfies the
behaviour of an AND gate as axiomatised by ANDBEHAV. Finally, a theory of
compound structures defines composite structures, properties of which, such as

4



subgates and their interconnections, are again obtained by applying projection
functions. The behaviour of composite structures may be derived from the be-
haviours of subcomponents. This work is a good example of the separation of
structure and behaviour. It is distinctive in its use of projection functions to ex-
tract the composition of non-simple structures. Usually subcircuits are combined
explicitly using composition and hiding operators (e.g. CIRCAL [60] and LCF_LSM
37)).

Wang [82] describes a Hardware Synthesis Logic which also maintains a clear
distinction between structure and behaviour. Circuit structures are composed in a
simple structural algebra, called the implementation language, containing a struc-
tural connective &, which is comparable to && introduced previously. A logic called
the specification language is used to reason about properties of implementations
and about specifications. The calculus is independent of a particular specification
logic, although a higher-order logic is used in the example below. The implementa-
tion and specification languages are related through a so-called construction logic,
which contains some inference rules and axiom schemas. The latter define, using
the specification language, the behaviour S of basic terms [ in the implementation
language. This is denoted by the use of the connective in I H S. For example:

Register(i,c,0) E|Vt. o(S t)=if ¢t then it else ot
The structural conjunction & is preserved by H, so that the following inference
rule is part of the calculus:
=1 H S
-1, E S,
L& H S A S,

Wang proves a number of meta-results relating the implementation, specification,

and construction logics.

2 Programming Language Semantics

The structure versus behaviour issues discussed above have been investigated for
conventional programming languages using formal semantics. Three types of se-
mantics have been proposed to give meaning to programs; axiomatic [26, 43],
denotational [75, 68, 78], and operational [66]. The three types of semantics may
be viewed as progressively more concrete, and therefore suited to different applic-
ations [68]. Axiomatic semantics map programs directly onto properties charac-
terising their behaviours. Denotational semantics map programs onto functions,
from which input-output behaviours may be derived. Operational semantics al-
low a behaviour to be derived through the sequence of transitions a program may
perform.

In Section 3 axiomatic and denotational approaches to hardware description
are presented, whereas Section 4 contains operational methods. In both sections
informal, partially formal, and formal methods are distinguished.



3 Extracting Behaviour From Circuit Descriptions

The intuitive solution to the structure-behaviour division is to eztract a behaviour
from a circuit description directly. We have a function behaviour: structural —
bool. In other words, behaviour maps a hardware description to a logical formula
characterising its behaviour. For example:

behaviour (delay(c, in,out)) = (out 0 =c A Yt.out(St)=1int) (1)

Here delay(c,in,out) is an HDL description for a unit transport delay. Let us
first assume that this equation is entirely outside a proof system. This definition
raises the following question: what is the relation between in and in? The former
is a syntactic structural object, whereas the latter is part of the formal system
in which the behaviour is expressed. The situation is clarified by giving explicit
types to the various components:

behaviour : structural — bool
delay : (value X name X name) — structural
in : name
in : signal = time — value

We would like behaviour functions to always produce formulae that are consistent,
i.e. do not contain contradictions. If this were not the case, a particular circuit
for which an inconsistent behaviour description was produced would satisfy any
specification. We note that in principle the range of the behaviour function may
be anything, as long as it allows us to express our intuitions about the behaviour
of circuits. If the result is truth-valued then the behaviour function could be called
axiomatic, or denotational otherwise.

The definition of behaviour could be an entirely informal exercise, but rather
than using an ad hoc implementation of the manipulation of behaviours later
work advocated mapping the extracted behaviour into a proof system. This lead
to a clean separation of conceptually different processes, namely the extraction
of the behaviour and the formal reasoning about this behaviour. We may view
Equation 1 in this light; the right hand side could be inside the proof system. One
fundamental problem remains: the behaviour function itself resides outside the
proof system. This means that we cannot reason about it within the proof system.
In particular, we will have to accept the correctness of the implementation of the
behaviour function in good faith. The HDL description is also informal, which
means we cannot reason about structural terms. We can only use the behaviour
of the design, and no structural aspects, inside the proof system. This becomes
a problem where we want to reason about general properties possessed by all, or
a set of circuits. The solution is to move the behaviour function into the proof
system also. For example, some hardware models may satisty the property that
for every input an output exists. It is preferable to prove a general theorem of the



form
F Ve : structural. Vi : const. Jo : const. simulation et = o

rather than a number of instantiations. It is important to note that the type struc-
tural, representing terms of type circuit, resides inside the proof system. Thus the
structural circuit description may be manipulated independently from its beha-
viour; we discuss this in more detail in Section 4. Whether formal or informal,
there is a real separation between the description of the circuit and its behaviour.

The remainder of this section refers to research that has some aspect of expli-
citly relating structural descriptions to behaviour.

Informal Behaviour Extraction Functions

Early research into hardware verification was informal and rather ad hoc. Most
efforts took the form of a software system that given a hardware description and a
specification would try to show their equivalence. From a historical perspective we
may consider these efforts as primitive behaviour extraction functions. In the late
1970s and early 1980s a number of efforts were directed at functional abstraction;
this is to the process of extracting a behaviour from a circuit description [50, 83,
76, 6, 87, 51].

Pitchumani and Stabler [65] used a Floyd-Hoare style semantics to give a defin-
ition for a register transfer-level HDL. The language which is described in [65] does
not have an explicit notion of time. Rather, time is introduced in the semantics
through the use of a distinguished variable ¢ that represents time. It may be used
in pre- and post-conditions, but not in programs. This precludes assignments to
the time variable, but does allow temporal information to be given in the specifica-
tion. Consider the NULL statement with its conventional semantics { P} NULL { P}.
When time is involved this becomes {P[t + 1/t]} NULL {P}. Thus NULL has no
effect other than to pass time. Related work was done by McFarland and Parker
[53].

Partially Formal Behaviour Extraction Functions

In [9] Borrione and Paillet recognise the need for a formal system to unambiguously
express the semantics of an HDL. They outline the design of a system to translate
VHDL descriptions to a representation of their behaviour in a proof system. The
behaviour is represented by a set of simultaneous functional equation, in the Boyer-
Moore and REVE proof systems [64].

Boulton [12, 10] describes a behaviour extraction function from a subset of
ELLA® to the HOL proof assistant. The behaviour function and its abstract syntax
tree input are outside the formal part of the HOL proof system. ELLA constructs
are mapped to high-level behaviours in HOL. For example, consider the case
statement in ELLA:

“ELLA is a trademark of the Secretary of State for Defence, United Kingdom.



[case in of lo: hi, hi: 1lo] =
CASE [in] [OF [[lo: hi]; [hi: 1o]1] (UNLIFT UU) =
CASE in [OF [CONST lo, SIGNAL LIFT.hi;

CONST hi, SIGNAL LIFT lo]] (UNLIFT UU)

The behaviour function [-] gives a semantics to the structural description

case in of lo: hi, hi: lo. CASE and OF are HOL functions that, given the
subcomponents’ behaviours [Lo: hi] and [hi: 1o]), represent the behaviour of
the whole case statement. Because this behaviour function is itself not part of
HOL, the case statement is informal and the variable in has no explicit relation
to in (¢f. Equation 1).

Other related work includes [79, 25] which describe mapping VHDL into HOL
and SDVS respectively. SILAGE has also been given a HOL semantics as above
[34, 2]. In [63] behaviours of CASCADE descriptions are mapped into the Boyer-
Moore and TACHE theorem provers. Eveking uses the LOVERT system to check the
equivalence of SMAX HDL circuit descriptions [23, 24]. Recently Umbreit has used
LAMBDA to map VHDL programs onto formally defined ML descriptions [77].

Formal Behaviour Extraction Functions

In [55, 56] Melham describes a formal behaviour function in HOL. He defined
an abstract data type representation of CMOS circuit descriptions inside the HOL
proof assistant. Part of this data type is given below.

circ ::= pwr str | ntran str str str | join cire circ | ... (2)

join ¢ ¢ is structural composition, comparable to && introduced earlier. Switch-
level model and threshold model semantics were defined using primitive recursion
functions. A fragment of the former is:

F Sm (pwr p) e =(ep=T)
FSm(ntrang sd)e =(egD (ed=ce3s)) (3)
FSm(joine ¢;) e =Sme eASme, €

Sm : cire — (str — bool) — bool is the function mapping circuits with environ-
ments to a formula describing their switch-level behaviour. The term e : str — bool
is the environment, mapping strings str, denoting wire names, to their values. As
we briefly indicated in Section 3 because the data type expressions are ordinary
proof system terms we may quantify over structural descriptions. This feature was
used to relate the switch-level and threshold models of hardware formally, i.e. as
a theorem in HOL.

In [7] Basin uses the NUPRL proof assistant [22], which implements a construct-
ive type theory. He uses the proofs-as-circuits paradigm, which is an adaptation
of the propositions-as-types idea [44]. A constructive proof contains computable



evidence, e.g. a circuit, of the truth of the proposition it proves. Different proofs
correspond to different implementations. Proving

>> Vi,0. de. S(i,0,c¢)

entails exhibiting a witness ¢ that satisfies the specification S(7,0,¢). (>> is
NUPRL’s judgement.) There is no guarantee, however, that realisation ¢ has a
particular form, or intention; we only know that it has behaviour, or extension,
S. We would like ¢ to be a circuit description, not just any old proof term. To
force the realisation to have a particular form, or to be at a particular level of
abstraction, a type of circuit terms is introduced. This type trans is a recursively
defined data type. An interpreter Interp,,,,, : trans — env — bool is defined to
give a meaning to these terms. trans and Interp,,,, . correspond to Melham’s circ
(Equation 2) and Sm (Equation 3) respectively.

The VERITAS approach, discussed in the introduction, corresponds to an ax-
iomatic approach fully within a proof system.

4 Deriving Behaviour via a Semantics

In the previous section we showed how behaviour could be extracted directly
from circuit descriptions. This is a high-level approach with no indication of an
underlying model of how the behaviour is arrived at. Industrial HDLs usually
have a simulator to animate hardware descriptions. It makes sense not to state
properties directly about circuit descriptions, but to derive properties using the
simulator. That is, we take a more operational stance. Taken at face value,
this would seem to imply that we can only derive properties using simulation;
exactly what we are trying to get away from. This is not the case, however: if
we provide an operational semantics for the HDL, we may prove general properties
about the simulator model. For example, we can characterise the domain on
which the simulator is a total function. An operational semantics gives us a firm
mathematical grip on the simulator model.” Often we can prove more detailed
properties using operational semantics than with other types of semantics because
we can refer to the simulation method.

As with behaviour functions earlier, we can define an operational semantics
on paper or use a proof system. In this case, however, there is no half-way stage:
either everything is on paper or everything is in a proof system. The reason for
this is clear when we consider a fragment of an operational semantics.

opsem env (wire n) = env n
opsem env (parcomp (¢, ¢;)) = (opsem env ¢;, opsem env ¢,)
opsem env (mux (¢, ¢y, ¢3)) = if opsem env ¢; then opsem env ¢, else opsem env ¢4

Particular implementations of this algorithm may still be incorrect. [31] shows how formal
simulation overcomes this problem.



wire n returns the value on the wire n, parcomp is parallel composition, and mux
a multiplexor. Although it is conceivable to map from outside into a proof system
this does not really make sense because the same objects and types occur in both
the domain and range of the semantics. This was not necessarily the case for the
axiomatic behaviour function of Equation 1.

The discussion that follows applies equally to ‘paper’ and embedded opera-
tional semantics. The difference is of a more pragmatic nature; it is possible to
use an operational semantics on paper but it quickly becomes tedious and error-
prone.

To embed an operational semantics in a proof system circuits, input and out-
put values, and the semantic rules must be encoded. Auxiliary objects such as
environments and wire names are also needed. The structure and behaviour of
hardware are kept separate by providing a structural description language, which
is given a meaning through the use of a semantics (¢f. Section 3). Operational
semantics relate a circuit and its inputs to an output according to some simulation
model. A type of the semantics could be the following (for simplicity we allow
only one input):

opsem : (structural x value) x value

Here the concept of state is missing; most circuits contain latches, which retain a
value between clock cycles. Adding an explicit state yields the following (¢f. [80]):

opsem : (structural x state X value) x (value x state)

An alternative view is to dispense with the state, and evolve the circuit itself so
that the state is part of the circuit description [29]:

opsem : (structural x value) x (value X structural)

Introduced by Milner [58], this type was used by Gordon as the basis for LCF_LSM
[37]. State transition functions of state machines have a similar type. This view
is also common in process algebras such as ccs [59], CIRCAL [60], and HOP [33],
which use labelled transition systems.

After the structural aspects of the HDL have been defined they can be manipu-
lated using proof system facilities. This leads to a number of possible applications:
we may quantify over circuits, expressing properties that hold for all or particular
classes of circuits. Circuits expressions can contain free variables, corresponding to
plug-in components [29]. Circuits may be operated on by transformation functions,
which may be proven correct [30], or be the result of formal hardware synthesis
functions [15, 32]. Interactive synthesis, perhaps based on the operational se-
mantics rules [30], or refinement-based strategies [27] is also possible. Operational
semantics based formal simulation is another powerful application [31]. It may be
very useful to have multiple semantic functions emphasising different aspects of
the structural description [15, 62, 69].

10



Embeddings of hardware notations are more powerful but also harder to use
than extracting the behaviour directly because one has to resort to the semantics
to obtain any behavioural information (see e.g. [11, Section 7.8]).

Recently a number of HDLs have been given formal semantics. With a few
exceptions, these have all been paper exercises [73, 3, 4, 42, 85], although [5,
74] provide computer support. Below we discuss work in conjunction with proof
systems.

Compiler Correctness in Proof Systems

Correctness proofs of compiler (algorithms) in proof systems use the same tech-
niques as those for embedding HDLs in proof systems. To reason about programs
their syntax and semantics have to be encoded in the proof system.

Milner and Weyhrauch used the Stanford LCF proof checker to check the cor-
rectness of a simple compiler algorithm [57]. The source and target languages
were axiomatised in the system through the use of constructors and destructors.
Aiello et al. encoded a denotational semantics for Pascal in the Stanford LCF in
a similar manner [1]. Using the Edinburgh LcF [35] Cohn proved a compiler cor-
rect with respect to the denotational semantics of imperative source and target
languages [19]. Other research involving compiler correctness proofs using proof
systems includes Sokolowski’s LCF work [70]. Joyce verified a compiler using HOL
with as target machine a non-idealised formally verified computer Tamarack [38]
taking into account finite storage [49]. A group at Computational Logic has used

the Boyer-Moore theorem prover to verify a code generator [88], assembler and
linker [61] to a verified microprocessor FM8502 [46].

Embedded Hardware Description Notations

Brock and Hunt [15] describe a simple combinatorial logic hardware description
language in the Boyer-Moore theorem prover. This is the earliest research known
to us that defines an operational semantics for an HDL in a proof system. Circuits
are encoded as list constants, which are interpreted by a semantic function. For
example, a full adder is described as follows.

‘(half-adder (a b) (sum carry) (((sum) (b-zor a b))
((carry) (b-and a b)))
(full-adder (a b ¢ ) (sum carry)
(((suml carryl) (half-adder a b))
((sum carry2) (half-adder suml ¢))

((carry) (b-or carryl carry2))))

The circuit half-adder is defined as having two inputs a and b, and two outputs
sum and carry. b-zor and b-and represent primitive XOR and AND gates respect-
ively. A well-formedness predicate is defined to check that these definitions are
purely combinatorial. The output value of the circuit description is computed

11



by an operational semantics, which is encoded as a total recursive function. The
conceptual® type of the semantic function is as follows:

heval : name — signalenv — circuitenv — value list

name consists of the name of the top-level component and its inputs. The en-
vironment circuitenv contains the definitions of non-primitive functions, such as
half-adder, and signalenv is used to store the values of input, output, and internal
variables such as suml1. To evaluate the half adder with inputs x and y with values
Frand T respectively, we use:

(heval ’(half-adder x y) (list (cons "z F) (cons 'y T)) (list “(half-adder (a b)...

A recent extension to this work allows sequential circuits with delayed feedback
loops and explicit state holding components [16].

Goossens [29, 32] describes the embedding of a formal static and dynamic op-
erational semantics for a subset of the industrial HDL ELLA [67]. The HDL contains
unit delays, generalised multiplexors, and allows both delayed and delayless feed-
back loops. In common with other work he defines a data type to define the
abstract syntax of the HDL. Due to restrictions of LAMBDA version 3.2 the op-
erational semantics is given as a function that is defined structurally on abstract
syntax terms. This limits proofs to structural induction on program terms. A
number of meta-level results such as the totality and monotonicity of the simu-
lator model are proved [30].

The same approach is used by van Tassel to embed a VHDL subset in HOL
[80]. Again an abstract data type is used to represent program terms, but here
a HOL package to define inductive relations [54] is then used to derive a rule
induction principle from a relational semantics. This is a more general induction
than Goossens’ structural induction on the abstract syntax of programs [17] and
the fixed-point (or computational) induction [52] in LCF. LAMBDA version 3.2
permits only functional semantics, whereas the HOL system allows more general
relational semantics.

More recently a spate of embeddings in HOL has been reported [18].

5 Conclusions

In this article we attempted to illustrate the evolution of the separation of struc-
tural and behavioural aspects in formal hardware verification. Although behavi-
oural hardware descriptions have shortcomings in this respect, their ease of ma-
nipulation compared to operational semantics based approaches is an advantage
[30]. Due to the use of the underlying logic relational hardware description (e.g.
[39]) is especially efficient.

®The actual type is slightly more complicated because the function encodes two mutually
recursive functions.

12



References

1]

[10]

Luiga Aiello, Mario Aiello, and Richard W Weyhrauch. The semantics of Pas-
cal in LCF. Memo STAN-CS-74-447, Stanford Artificial Intelligence Labor-
atory, Computer Science Department, Stanford University, August 1974.

C M Angelo, L. Claesen, and H De Man. The formal semantics definition
of a multi-rate DSP specification language in HOL. In Luc Claesen and
Michael Gordon, editors, Higher Order Logic Theorem Proving and [ts Ap-
plications, pages 375-394, Leuven, Belgium, September 1992. North Holland.
IFIP transactions A-20.

H Barringer, G Gough, T Longshaw, B Monahan, M Peim, and A Williams.
Semantics and verification for boolean kernel ELLA using 10 automata. In
P Prinetto and P Camurati, editors, Advanced Research Workshop on Cor-
rect Hardware Design Methodologies, pages 65-90. ESPRIT CHARME, North
Holland, June 1991.

Howard Barringer, Graham Gough, and Brian Monahan. Operational se-
mantics for hardware design languages. In P Prinetto and P Camurati, ed-
itors, Advanced Research Workshop on Correct Hardware Design Methodolo-
gies, pages 313-334. ESPRIT CHARME, North Holland, June 1991.

Howard Barringer, Graham Gough, Brian Monahan, and Alan Williams. A
semantics for Core ELLA. Deliverable D2.3b, Department of Computer Sci-
ence, University of Manchester, November 1992. Formal Verification Support

for ELLA, TED project 4/1/1357.

Harry G Barrow. Verify: A program for proving correctness of digital hard-
ware designs. Artificial Intelligence, 24:437-491, 1984.

David A Basin. Extracting circuits from constructive proofs. In 1991 Inter-
national Workshop on Formal Verification in VLSI Design. ACM TFIP WG
10.2, January 1991.

J Bormann, H Nusser-Wehlan, and G Venzl. Formal design in an industrial
research laboratory: Lessons and perspectives. In Jgrgen Staunstrup and
Robin Sharp, editors, Second Workshop on Designing Correct Circuits, pages
193-213, Lynbgy, Denmark, January 1992. IFIP WG 10.2, WG 10.5.

D Borrione and J L Paillet. An approach to the formal verification of VHDL
descriptions. Technical Report RR 683-1-, IMAG/ARTEMIS, November 1987.

Richard Boulton. A HOL semantics for a subset of ELLA. Technical Report
254, University of Cambridge Computer Laboratory, April 1992.

13



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Her-
bert, and John van Tassel. Experience with embedding hardware description
languages in HOL. In V Stavridou, T F Melham, and R T Boute, editors,

Theorem Provers in Circuit Design: Theory, Practice and Frperience, pages

129-156. IFIP TC10/WG 10.2, North Holland, June 1992.

Richard Boulton, Mike Gordon, John Herbert, and John van Tassel. The HOL
verification of ELLA designs. Technical Report 199, University of Cambridge
Computer Laboratory, August 1990.

Robert S Boyer and J Strother Moore. A Computational Logic. ACM Mono-
graph Series. Academic Press, New York, 1979.

Melvin A Breuer. General survey of design automation of digital computers.

Proceedings of the IEEFE, 54(12):1708-1721, December 1966.

Bishop C Brock and Warren A Hunt, Jr. The formalization of a simple hard-
ware description language. In Luc Claesen, editor, Applied Formal Meth-
ods For Correct VLSI Design, pages 778-792, Amsterdam, November 1989.
IMEC-IFIP International Workshop, Elsevier Science Publishers.

Bishop C Brock, Warren A Hunt, Jr, and William D Young. Introduction to a
formally defined hardware description language. In V Stavridou, T F Melham,

and R T Boute, editors, Theorem Provers in Circuit Design: Theory, Practice
and Fxperience, pages 3-35. [IFIP TC10/WG 10.2, North Holland, June 1992.

R M Burstall. Proving properties of programs by structural induction. The
Computer Journal, 12(1):41-44, 1969.

Luc Claesen and Michael Gordon, editors. Higher Order Logic Theorem Prov-
ing and its Applications, Leuven, Belgium, September 1992. North Holland.
IFIP transactions A-20.

Avra Cohn. High level proof in LCF. Internal Report CSR-35-78, Department
of Computer Science, University of Edinburgh, November 1978.

Avra Cohn. The notion of proof in hardware verification. Journal of Auto-

mated Reasoning, 5(2):127-139, June 1989.

Avra Cohn and Mike Gordon. A mechanised proof of correctness of a simple
counter. Technical Report 94, University of Cambridge Computer Laboratory,
July 1986.

Robert I Constable and Douglas J Howe. Nuprl as a general logic. In Pier-
giorgio Odifreddi, editor, Logic and computer science, volume 31 of APIC
studies in data processing, pages 77-90. Academic Press, 1990.

14



23]

[24]

[25]

[26]

[27]

28]

[29]

30]

31]

32]

33]

Hans Eveking. Axiomatizing hardware description languages. International

Journal of Computer Aided VLSI Design, 2:263-280, 1990.

Hans Eveking and Ulf Schellin. Register-transfer level verification in SMAX.
CHARME Project Report THD-2.B.2.b-01, Technische Hochschule Darm-
stadt, October 1991.

Ivan V Fillippenko. VHDL verification in the state delta verification system
(SDVS). In 1991 International Workshop on Formal Verification in VLSI
Design, January 1991.

R W Floyd. Assigning meanings to programs. Proceedings of American
Mathematical Society, Symposia in Applied Mathematics, 19:19-32, 1967.

Michael P Fourman and FEleanor M Mayger. Formally based system design
— interactive hardware scheduling. In G Musgrave and U Lauther, editors,

International Conference on VLSI, Munich, 1989.

Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the
Lambda System. Abstract Hardware Limited, version 3.2, November 1990.

K G W Goossens. Embedding a CHDDL in a proof system. In P Prinetto
and P Camurati, editors, Advanced Research Workshop on Correct Hardware
Design Methodologies, pages 359-374. ESPRIT CHARME, North Holland,
June 1991. Also as LFCS Report ECS-LFCS-91-155.

K G W Goossens. Embedding Hardware Description Languages in Proof Sys-
tems. PhD thesis, Laboratory for Foundations of Computer Science, Depart-
ment of Computer Science, University of Edinburgh, December 1992.

K G W Goossens. Operational semantics based formal symbolic simulation.
In Luc Claesen and Michael Gordon, editors, Higher Order Logic Theorem
Proving and Its Applications, pages 487-506, Leuven, Belgium, September
1992. North Holland. A longer version is available as LFCS Report ECS-
LFCS-92-231.

K G W Goossens. The formalisation of a hardware description language in a
proof system: Motivation and applications. In Proceedings of the XIII Con-
ference of the Brazilian Computer Society, Florianopolis, Brazil, September

1993.
Ganesh Gopakakrishnan, Richard M Fujimoto, Vankatesh Akella, N S Mani,

and Kevin N Smith. Specification-driven design of custom hardware in HOP.
In G Birtwistle and P A Subrahmanyam, editors, Current Trends in Hard-
ware Verification and Automated Theorem Proving, pages 128-170, New York,
1988. Springer Verlag.

15



[34]

[35]

[36]

37]

38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Andrew D Gordon. The formal definition of a synchronous hardware descrip-
tion language in higher order logic. In International Conference on Computer

Design, October 1992.

Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF,
volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.

Michael J C Gordon. HOL: A proof generating system for higher-order logic.
In Graham Birtwistle and P A Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 73-128, Boston, 1987. Kluwer Academic
Publishers.

Mike Gordon. LCF_LSM. Technical Report 41, University of Cambridge
Computer Laboratory, September 1983. Second Printing with Corrections
and Additions.

Mike Gordon. Proving a computer correct. Technical Report 42, University
of Cambridge Computer Laboratory, 1983. With the LCF_LSM hardware

verification system.

Mike Gordon. Why higher-order logic is a good formalisation for specifying
and verifying hardware. In G Milne and P A Subrahmanyam, editors, Formal

Aspects of VLSI Design, pages 153-177, Amsterdam, 1985. North Holland.

F K Hanna and N Daeche. Specification and verification using higher-order
logic. In C J Koomen and T Moto-Oka, editors, CHDL 85: 7th Interna-
tional Symposium on Computer Hardware and Description Languages and
their Applications, pages 418-433, Amsterdam, 1985. North Holland.

Gwendolyn G Hays. Computer-aided design: Simulation of digital design
logic. IEEE Transactions on Computers, C-18(1):1-10, January 1969.

M G Hill. The dynamic semantics of kernel ELLA. Memorandum 4630,
Defence Research Agency, Malvern, UK, August 1992.

C A R Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576-583, October 1969.

W Howard. The formulas-as-types notion of construction. In J P Sledin and
J R Hindley, editors, To H B Curry: FEssays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 470-490. Academic press, 1980.

Warren A Hunt, Jr. FM8501: A verified microprocessor. Technical Report 47,
Institute for Computing Science. The University of Texas at Austin, Decem-
ber 1985. Dissertation.

Warren A Hunt, Jr. Microprocessor design verification. Journal of Automated

Reasoning, 5:429-460, 1989.

16



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

IEEE computer, December 1974. Special Edition on Hardware Description
Languages.

Jeff Joyce, Graham Birtwistle, and Mike Gordon. Proving a computer cor-
rect in higher order logic. Technical Report 100, University of Cambridge
Computer Laboratory, December 1986. HOL version of Technical Report 42.

Jeffrey J Joyce. A verified compiler for a verified microprocessor. Technical
Report 167, University of Cambridge Computer Laboratory, March 1989.

S Leinwand and T Lamdan. Design verification based on functional abstrac-
tion. In 16th Design Automation Conference, pages 353-359, San Diego,
California, June 1979. ACM/IEEE.

Jean-Christophe Madre and Jean-Paul Billon. Proving circuit correctness
using formal comparison between expected and extracted behaviour. In Pro-
ceedings of the 25th ACM/IEEE Design Automation Conference, pages 205
210, 1988. Also in Formal Verification of Hardware Design M Yoeli (ed.),
IEEE Computer Society Press Tutorial.

Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive methods for

proving properties of programs. ACM SIGPLAN Notices, 7:27-50, 1972.

Michael C McFarland and Alice C Parker. An abstract model of behavior for
hardware descriptions. IEEE Transactions on Computers, C-32(7):621-637,
July 1983.

T F Melham. A package for inductive relation definitions in HOL. In Myla
Archer, Jeffrey J Joyce, Karl N Levitt, and Phillip J Windley, editors, The
HOL Theorem Proving System and Its Applications, pages 350-357. IEEE
Computer Society Press, August 1991.

Thomas F Melham. Using recursive types to reason about hardware in higher
order logic. Technical Report 135, University of Cambridge Computer Labor-
atory, May 1988.

Thomas Frederick Melham. Formalising abstraction mechanisms for hard-
ware verification in higher order logic. Technical Report 201, University of

Cambridge Computer Laboratory, August 1990. PhD Thesis.

R Milner and R Weyhrauch. Proving compiler correctness in a mechanised
logic. In B Meltzer and D Mitchie, editors, Machine Intelligence, chapter 3.
Edinburgh University Press, 1972.

Robin Milner. Processes: A mathematical model of computing agents. In
Rose and Shepherdson, editors, Logic Colloquium 73: Studies in Logic and
Foundations of Mathematics, volume 80, pages 157-173. North Holland, 1973.

17



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer Verlag, 1980.

Faron Moller. The definition of CIRCAL. In Luc Claesen, editor, Ap-
plied Formal Methods For Correct VLSI Design, pages 178-187, Amsterdam,
November 1989. IMEC-IFIP International Workshop, Elsevier Science Pub-

lishers.

J Strother Moore. A mechanically verified language implementation. Journal

of Automated Reasoning, 5:461-492, 1989.

John T O’Donnell. Hardware description with recursion equations. In M R
Barbacci and C J Koomen, editors, CHDL §7: 8th International Symposium
on Computer Hardware Description Languages and Their Applications, pages

363-382. IFIP WG 10.2, North Holland, 1987.

Laurence Pierre. From a HDL description to formal proof systems: Principles
and mechanization. In D Borrione and R Waxman, editors, CHDL 91: 10th
International Symposium on Computer Hardware Description Languages and
Their Applications, April 1991.

Laurence Pierre. One aspect of mechanizing formal proof of hardware: The
generalization of partial specifications. In 1991 International Workshop on

Formal Verification in VLSI Design. ACM IFIP WG 10.2, January 1991.

Vaijay Pitchumani and Edward P Stabler. A formal method for computer
design verification. In 19th Design Automation Conference, pages 809-814,
1982.

Gordon Plotkin. A structural approach to operational semantics. Technical
Report FN-19, Computer Science Department, Aarhus University (DAIMI),
1981.

Praxis Systems plc, 20 Manvers Street, Bath BA1 1PX. The ELLA Language
Reference Manual, issue 3.0, 1986. ELLA is now marketed by R® Systems.

David A Schmidt. Denotational Semantics, A Methodology for Language
Development. Allyn and Bacon Inc, Boston, 1986.

Satnam Singh. Circuit analysis by non-standard interpretation. In Jorgen
Staunstrup and Robin Sharp, editors, Second Workshop on Designing Correct
Circuits, pages 199-138, Lynbgy, Denmark, January 1992. IFIP WG 10.2,
WG 10.5.

Stefan Sokolowski. Soundness of Hoare’s logic: An automated proof using
LCF. ACM Transactions on Programming Languages and Systems, 9(1):100—
120, January 1987.

18



[71]

[72]

73]

[74]

[30]

[81]

R Spence. Progress in computer-aided circuit design. Computer Aided Design,

1(4):19-24, 1969.

Edward P Stabler. System description languages. [EEFE Transactions on
Computers, C-19(12):1160-1173, December 1970.

V Stavridou, J A Goguen, S M Elker, and S N Aloneftis. FUNNEL: A CHDL
with formal semantics. In P Prinetto and P Camurati, editors, Advanced

Research Workshop on Correct Hardware Design Methodologies, pages 115—
137. ESPRIT CHARME, North Holland, June 1991.

V Stavridou, J A Goguen, A Stevens, S M Eker, S N Alonefits, and K M
Hobley. FUNNEL and 20BJ: Towards and integrated hardware design en-
vironment. In V Stavridou, T F Melham, and R T Boute, editors, Theorem
Provers in Circuit Design: Theory, Practice and Experience, pages 197-223.

[FIP TC10/WG 10.2, North Holland, June 1992.

Joseph E Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

Takao Uehara, Takao Saito, Fumihiro Maruyama, and Nobuaki Kawato. DDL
verifier and temporal logic. In T Uehara and M Barbacci, editors, CHDL §3:
6th International Symposium on Computer Hardware Description Languages
and their Applications, pages 91-102, Amsterdam, 1983. North Holland.

Gabriele Umbreit. Providing a VHDL-interface for proof systems. In FURO-
DAC, pages 698-703, 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos,
CA 90720-1264, September 1992. IEEE Computer Society Press.

Filip van Aelten and Jonathan Allen. Efficient verification of VLSI circuits
based on syntax and denotational semantics. In Luc Claesen, editor, Ap-
plied Formal Methods For Correct VLSI Design, pages 188-197, Amsterdam,
November 1989. IMEC-IFIP International Workshop, Elsevier Science Pub-

lishers.

John van Tassel and David Hemmendinger. Toward formal verification of
VHDL specifications. In Luc Claesen, editor, Applied Formal Methods For
Correct VLSI Design, pages 261-270, Amsterdam, November 1989. IMEC-
IFIP International Workshop, Elsevier Science Publishers.

John P van Tassel. A formalisation of the VHDL simulation cycle. In Luc
Claesen and Michael Gordon, editors, Higher Order Logic Theorem Prov-
ing and Its Applications, pages 359-374, Leuven, Belgium, September 1992.
North Holland. IFIP transactions A-20.

W M vanCleemput. Computer hardware description languages and their
applications. In 16th Design Automation Conference, pages 554-560, San
Diego, California, June 1979. ACM/IEEE.

19



[82]

[83]

[84]

[85]

[36]

[87]

[33]

Li-Guo Wang. Hardware synthesis logic and its independence. Manuscript.
Laboratory for Foundations of Computer Science, Computer Science Depart-
ment, University of Edinburgh, November 1991.

Daniel Weise. Functional verification of MOS circuits. In 2/th Design Auto-
mation Conference, pages 265-270, Miami Beach, Florida, 1987. ACM/IEEE.

Daniel Weise. Constraints, abstraction, and verification. In M Leeser and
G Brown, editors, Hardware Specification, Verification and Synthesis: Math-
ematical aspects, pages 25-39. Springer Verlag, July 1989.

Philip A Wilsey. Developing a formal semantic definition of VHDL. In J Mer-
met, editor, VHDL for Simulation, Synthesis and Formal Proofs of Hardware,
pages 243-256. Kluwer Academic Publishers, 1992.

Glynn Winskel. Models and logic of MOS circuits. In M Broy, editor, In-
ternational Summer School on Logic of Programming and Caleuli of Dis-
crete Design, volume 36 of NATO ASI Series. Springer Verlag, July—August
1986. Also as University of Cambridge Computing Laboratory technical re-
port number 96.

Ching-Farn E Wu, Anthony S Wojcik, and Lionel M Ni. A rule-based cir-
cuit representation for automated CMOS design and verification. In 24th
Design Automation Conference, pages 786—-792, Miami Beach, Florida, 1987.
ACM/IEEE.

William D Young. A mechanically verified code generator. Journal of Auto-
mated Reasoning, 5:493-518, 1989.

20



