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Abstract

Hardware description languages �hdls� are a notation to describe behavioural and
structural aspects of circuit designs� We discuss why it is worthwhile to give a formal
semantics for an hdl� and why we have encoded such a semantics in a proof system� We
outline the subset of the hardware description language ella� which we use� its formal
structural operational semantics� and its embedding in the higher�order logic proof sys�
tem Lambda

�� Finally we discuss applications of this approach which include the ability
to prove results about the simulation mechanism� formal symbolic simulation� various
synthesis techniques� and transformational design�
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Hardware description languages �hdls� are a notation to describe designs of hardware�
There is a wide spectrum of hdls �
�
� examples are ddl ��
� ella �
	
� and vhdl �
�
�
Hardware description languages are used extensively in industry� However� academic re�
search into the formal veri�cation of hardware ��

 predominantly uses notations based
on higher�order logic ��	
� This diminishes the chances of industrial adoptation of veri�c�
ation methodologies based on academic research� By providing a formal basis for a widely
used hdl� and building a methodology which is compatible with it� we hope this barrier
will be reduced� In the following we give our perception of concepts such as structure and
behaviour which play an important r�ole in hardware design and description� We argue
why the use of a formal semantics for an hdl is bene�cial�
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The r�ole of hdls has changed over time� The function of early hdls was to document
hardware implementations� only structural information was needed to describe compon�
ents and their interconnections� The realisation that these hdl descriptions could also
be used to simulate the hardware component which they documented was a conceptually
very important step�� Simulation entails providing a circuit description with input stim�
uli� and computing its outputs according to some model� A behaviour was now associated
with the structural description� The use of hdls as documentation was vastly expanded to
include design and debugging� To aid this new r�ole behavioural language constructs were
added to allow circuits to be described in terms of their behaviour only� no implement�
ations is implied� �Note that conventional programming languages may be considered
�and used� as a behavioural subset of an hdl because no hardware implementation is
speci�ed by a conventional program � it exhibits an input�output behaviour only�� hdls
could now be used throughout the design process� During the early stages in the design
process designs are given in an abstract� behavioural manner� with no implementational
bias� In later stages a design would consist of structural descriptions� re�ecting the actual
hardware implementation� In both cases� simulating the hdl description� should give the
same behaviour�

A large body of research exists in the area of formal semantics for conventional pro�
gramming languages ��� 

� 
�� 
�
� Formal semantics are essential to be able give a clear�
unambiguous de�nition of a programming language� Properties about individual pro�
grams� as well as properties of classes of programs may be proven using formal semantics�
As we saw previously� a conventional programming language may be regarded �somewhat
unfairly� as the behavioural subset of a hardware description language� However� due to
the prevalence in academia of notations other than industrial hdls� formal semantics for
hdls were not considered until recently ��� �
� 
�� ��� ��
� We now explain how hardware
has been described in most of the hardware veri�cation literature� and why this has ob�
fuscated the boundary between the structure and behaviour of a circuit� The use of an
hdl with associated formal semantics� in contrast� clari�es these issues ���
�

We show how a simple NAND gate may be described using an hdl and using higher�
order logic to illustrate problems with the latter approach� Using the hardware description
language ella �
	
 two NOT gates� an AND gate� and an OR gate may be described �with
minor variations� as follows�

FN NOT �BOOL� x� �� BOOL� CASE x OF true� false ELSE true ESAC�

FN SLOWNOT �BOOL� x� �� BOOL� DELAY �NOT x��

FN AND �BOOL� x y� �� BOOL�

CASE �x�y� OF �true�true�� true ELSE false ESAC�

FN OR �BOOL� x y� �� BOOL�

CASE �x�y� OF �false�false�� false ELSE true ESAC�

�The behaviour of an hdl description and the corresponding implementation in hardware are related
through a model of hardware� Features which the model abstracts away from �for example by regarding
data signals as boolean values� cannot be reasoned about� If the model is unrealistic or incorrect� the
behaviours associated with an hdl program are also invalid ��	� Prior to simulation of hdl descriptions
no model was required�






All these gates are described in terms of their behaviour� they are primitive components�
In contrast consider two di�erent implementations of a NAND gate�

FN NAND� �BOOL� x y� �� BOOL�

BEGIN

MAKE NOT� not�

MAKE AND� and�

JOIN �x�y� �� and�

JOIN and �� not�

OUTPUT not

END�

FN NAND	 �BOOL� x y� �� BOOL�

BEGIN

MAKE OR� or�

JOIN �NOT x�NOT y� �� or�

OUTPUT or

END�

Whereas the NOT� OR� and AND gates are described in terms of their behaviour� the NAND
gates are de�ned structurally� by combining smaller components� Their behaviour can
be derived from the behaviour of their subcomponents� In particular� NAND� uses a NOT

gate and not the slower� but functionally equivalent� implementation SLOWNOT� This is
structural information� Moreover� NAND� and NAND	 are exhibit the same behaviour but
have a di�erent internal structure�
Using higher�order logic� an AND gate may be described as follows ��	
�

� and�x� y� z� � �z � x � y�

It de�nes a three�place relation between booleans such that the output z is the boolean
conjunction of the two inputs x and y� It may be composed with a similarly de�ned NOT

gate as follows�
� �z� and�x� y� z�� not�z� a�

Although this looks conspicuously like the structural description NAND�� it is in fact a
behavioural description� composed of the two very simple relational descriptions and and
not� To see why this description is not su�ciently discerning� consider the equivalent to
the NAND	 description�

� �a� b� not�x� a�� not�y� b�� or�a� b� z�

However� we can prove trivially that

� �z� and�x� y� z�� not�z� a�� �a� b� not�x� a� � not�y� b� � or�a� b� z�

Thus two so�called structural descriptions in higher�order logic may be proven identical�
although they are intended to denote structurally di�erent circuits� This clearly shows
that using logic in this manner to give structural hardware descriptions is inadequate�
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The reason why a hardware description language does not su�er from the same prob�
lem is that we derive the behaviour of an hdl fragment using simulation �in the informal
case� or using its semantics �in a formal setting�� Thus NAND� and NAND	 describe two
structurally di�erent circuits with the same �derived� behaviour�

Following the example of conventional programming languages we give a formal se�
mantics for a subset of the hardware description language ella� An outline of the �paper
semantics� of picoella �as our ella subset is called� is given in the next section� The
reasons for� and principles of embedding picoella in Lambda ���
� the higher�order logic
proof assistant we use� are given in Section �� Our work combines post hoc veri�cation�
simulation� synthesis� and transformations in one framework� as described in Section ��

� picoELLA and Its Formal Semantics

The industrial hardware description language ella �
	
 is relatively small and has a clean
simulator model� Although it is possible to give direct semantics for most of the language
�

� we chose to use a minimal subset� called picoella� into which all of ella may be
translated� We will only give a �avour of this subset� for aspects such as unde�ned� or
�don�t know� values ��type below� consult ���� Chapter �
� picoella is a very simple
functional language with the following abstract syntax�

pgm ��� TYPE decl IN pgm j expr

decl ��� type � cons� 
 � � � 
 cons
n
j type � type� � type�

expr ��� const j name j expr ��
 j expr �

 j �expr �� expr�� j

LET name � expr� IN expr� j LET INIT const REC name � expr � IN expr � j

IF expr� MATCHES pat THEN expr � ELSE expr� j DELAY �const � expr �

pat ��� type j cons j �pat�� pat�� j pat�
pat�

const ��� �type j cons j �const�� const��

Type de�nitions declare a number of constructors� or a non�recursive binary tuple type�
Patterns pat are used in the IF statement which is a generalised multiplexor� If the
output of circuit expr� matches pattern pat the IF delivers the result of expr �� else that
of expr ��

� The LET construct de�nes a local name for the result of circuit expr �� Use
of name in expr� corresponds to a fan�out of the signal� whereas substituting expr� for
all occurrences of name in expr � would duplicate the hardware component expr�� The
recursive LET allows name to be used in expr � too� This corresponds to feedback� an
example of which is given below� The term INIT const ensures unique typing and guar�
antees that all simulations terminate� A discrete and linear time base� isomorphic to the
natural numbers� is introduced into the language by the DELAY construct� DELAY�ct�e�

is a unit delay of the circuit e� The result of evaluating e at time t will be output by
DELAY�ct�e� at the next time step t� �� At the current time t� the value ct is the result�
This shows that the state of the delay �i�e� the constant ct� is explicit in the descrip�
tion of the delay� picoella dispenses with a memory or store which other languages

�Actually� if the output of expr� is insu
ciently de�ned to decide between the two branches an
unde�ned value is output� This is crucial for the semantic model ���� Chapter �	�
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require to save the state from one time step to the next� Only an enviroment for use
within one time step is needed� However� as a result of the explicit representation of the
state� a new circuit description must be evaluated at each time step� The result of an
evaluation consists therefore of a value output together with a description of the circuit
at the next time step� The type of the simulation �or dynamic semantics� is therefore
�environment � expression� � �value � expression�� State transition functions of state
machines have a similar type �value � state� � �value � state�� as do process algebras
such as ccs �
�
�

As an example� consider the following circuit which implements a parity checker� It
returns hi at time t � � if there have been an even number of hi�s on the input signal
input during the closed time interval ��� t
� At time zero it outputs hi�

LET INIT �bit

REC xor � DELAY �hi� IF �input�xor� MATCHES �hi�lo�
�lo�hi�

THEN hi ELSE lo�

IN xor

Few hdls and programming languages have a precise de�nition� In practice the sim�
ulator or compiler serves as this de�nition� but this leads to problems when di�erent
implementations present con�icting outputs� A formal semantics may be used to give a
mathematical description of the behaviour of an hdl� i�e� how a simulator should behave��

General properties� such as termination of any simulation within a �nite number of steps�
may be proved about the semantics �and hence the behaviour of conforming simulators��
Some hdls that have been formalised include Funnel �
�
� silage ���
� and various sub�
sets of ella ��
� �� 
� 
�
� and vhdl ���� ��
� The remainder of this section describes the
semantics for picoella ���
 which takes the form of a structural operational semantics
�
�
� It comprises a static semantics describing which programs are well�typed� and a
dynamic semantics de�ning the run�time behaviour of well�typed programs� We will not
discuss the static semantics here� it su�ces to say that it is relatively straightforward�
picoella dynamic semantics rules ��	 in total� fall into two categories� those dealing
with time� and those dealing with the evaluation of expressions within one time step�
The reduceSeqCons rule belongs to the �rst class�

 � � exprt � ot� exprt�� tl�  � exprt�� � tl
�

� exprt�N

it �� tl�  � exprt � ot �� tl�� exprt�N

Here exprt is the program at time t�  the environment in which the program runs�
and it �� tl the input stream�  � is  with input value it adjoined �this will be made
more precise later�� This rule shows that at time t we run the program exprt with input
value it in environment  

�� The output value ot is added to the output stream� and the
new program exprt�� is evaluated with the remainder of the input stream� As explained
previously� since the state of the circuit is explicit in its description� we need to evaluate

�Note that the implementation of the simulator may use any model� as long the input�output relation
obeys the de�nition� The semantic de�nition should be clear and simple� not necessarily e
cient� In
fact� in ��
	 we show how the semantics may be used as a simulator�
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a new circuit at every time step� A typical member of the second category of rules is the
reduceTuple rule�

 � expr� � v�� expr
�

�
 � expr� � v�� expr

�

�

 � �expr�� expr��� �v�� v��� �expr�

�
� expr�

�
�

To evaluate a tuple in environment  � both subexpressions must be evaluated in the same
environment� The rule for the delay shows the use of the embedded state�

 � expr � v� expr
�

 � DELAY �c� expr�� c� DELAY �v� expr��

The output from the delay is its latched value c� The new description of the delay� to
be evaluated at the next time step� contains the output v from expr at the current time
step� In other words� it has latched this clock�cycle�s output�

Some properties of the semantics are discussed at the end of the next section�

� Embedding picoELLA in Lambda

The semantics described above� has been encoded in the Lambda proof system ���
� which
implements a polymorphic constructive higher�order logic of partial terms�� A large subset
of the functional language ml ���
 is used to de�ne new data types and operations on
data types within the logic� The soundness of the system cannot be compromised through
new de�nitions� Lambda returns a number of rules axiomatising the new ml data types�
such as existence of constructors� �in�equality rules� and a structural induction principle�
Rules for functions include rewrite rules� which may be used to de�ne derived rules
and tactics� Tacticals can be used to combine tactics into rewrite strategies� symbolic
simulation commands� etc�

The key to the embedding is the explicit encoding of hdl terms as objects in the
proof system� It allows manipulation of circuit descriptions by functions and relations�
and quanti�cation over circuits� e�g� �for all circuits c which are well�typed P �c� holds��
�there exists a circuit c which implements speci�cation S�� Indeed� the purely structural
terms are given a meaning operationally� by the function reduce overleaf� which encodes
the dynamic semantics� �An alternative approach is to give structural terms a meaning
directly� through a denotational or axiomatic semantics� However� an operational de�n�
ition allows reasoning about the simulator mechanism� and not just the input�output
behaviour� For a detailed discussion see ���
�� In the following� we �rst de�ne a repres�
entation of constants and circuit expressions� then the semantic function which interprets
them� Some important properties of the semantics are discussed towards the end of this
section�

To represent picoella constants the ml de�nition system was used to de�ne the data
type const�

datatype const � Cons of natural 
 natural 


CoTuple of const 
 const�

�Note that we use Lambda version ���� More recent versions uses a di�erent logic�
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Cons�i�t� encodes the i
th constructor of type t� Cons���t� represents �t which is the

unde�ned� or �don�t know� value of type t� A constant is therefore a constructor or
bottom value� or a tuple containing constants� The pat data type de�ned similarly to
encode patterns of the IF statement� The type representing expressions or circuits is
de�ned as follows�

datatype expr � Const of const 


Tuple of expr 
 expr 


Let of expr 
 expr 


Var of natural 


Delay of const 
 expr 


If of expr 
 expr 
 expr 
 pat 


Index� of expr 


Index	 of expr 


LetRec of const 
 expr 
 expr�

Note that no constructor is present for TYPE� Types are dealt with on a meta�level�
i�e� using Lambda�s facilities� rather than at the expr object level� To embed the LET

operator the de Bruijn encoding of lambda abstractions is used �	
� The bound variables
of lambda expressions are encoded as natural numbers indicating the distance �measured
in intervening lambdas� away from the de�ning lambda� Thus �x��y��x� �x� y�� a b would
be encoded as ����� ��� ��� a b� In picoella this corresponds to embedding
LET x � a IN LET y � b IN �x��x�y�� as
Let �a� Let �b� Tuple �Var �� Tuple �Var �� Var ������

As explained two pages back� the type of the dynamic semantics� de�ned by the
reduce� is reduce� const list �� expr �� �const 
 expr�� where const list represents
the value environment�

fun reduce l �Let �e�� e��� �

let val �c�� f�� � reduce l e� in

let val �c�� f�� � reduce �c���l� e� in

�c�� Let �f��f���

end end 


reduce l �Var n� � �elem l n� Var n� 


reduce l �Delay �c� e�� � �c� Delay �reduce l e�� 
 � � �

The evaluation of the LET statement involves reduces the de�ning expression� and pushing
the value result on the stack l �cf� storing it in the environment  �� Evaluating a name is
implemented by a lookup in the environment  in the dynamic semantics� and accessing
the correct element in the stack l in the embedding�

Using these de�nitions and derived properties� the operational semantics rules de�
scribed at the start of this section may be deduced within the proof system� For ex�
ample� the �pretty�printed� rule reduceSeqCons below corresponds to reduceSeqCons
shown previously��

�All proof system output will be pretty�printed� for example� pre�x constructors such as Let�e�f� will
be shown in�x LET e IN f � Rules whose name is shown in the typewriter font denote the embedded
rules� those in roman font the �paper� rules�

	



� �instream � env � circ� � �outstream �circ� ��

� �i� �� env � circ � �o� �circ� � � t �

��������������������

� �i� �� instream � env � circ � �o� �� outstream �circ� ��

To evaluate a program circ with a non�empty input stream i� ��instream � the head of
the input stream is pushed onto the environment env � This corresponds  � in the paper
rules� circ is then processed within this time step� The remainder of the input stream is
then evaluated using the new circuit circ� � Finally� the output o� is prepended to the
resulting output stream� reduceDelay shows how the static and dynamic semantics are
used in the same rule�

� initial � t

� �env � circ � �out �circ� �� t �

��������������������

� �env � DELAY �initial �circ � � �initial �DELAY �out �circ� ��� t �

The �rst premise expresses the typing constraint that the constant initial must have
the same type t as the expression circ � The second subgoal is a shorthand for both a
dynamic semantics inference � � � � � �� and a static semantics inference � � � ��

It is important to realise that circ � t � etc� are meta�variables� The reduceDelay

rule is really a rule schema� which may be instantiated in an in�nite number of di�erent
ways� When it is applied to a particular DELAY statement such as DELAY �hi�Var ���
initial and circ � are uni�ed with hi and Var � respectively� This uni�cation is re�ected
in every place where the variables occur in the rule� The uni�cation works both ways so
that meta�variables in a rule are specialised so that the rule applies to the current goal �as
in the example below�� But meta�variables in the goal may also be made more concrete
for the rule to apply� We will see examples of this later on� In Lambda meta�variables
may be �exible or rigid� The former are used to stand for some term to be determined
as the proof proceeds� the latter require proofs to be schematic in the variable� Rigid
variables ensure that a general result� rather than an instantiation of the result� is proved�

Properties of the Semantics

To increase the con�dence in the correctness of the encoding of the semantics in the proof
system we proved a number of properties about the embedded semantics which we also
proved for the �paper� version� These properties are of interest because they hold for all
circuits which are well�typed �according to the static semantics�� We proved that the
reduction function is total� i�e� for all inputs an output will be produced� This is a non�
trivial observation because feedback loops need not be broken by delays� which allows
circuits which are meta�stable� Consider a NOT gate with its output fed into its input�

LET INIT �bit

REC loop � IF loop MATCHES lo THEN hi ELSE lo

IN loop

If the wire loop carries the signal hi� the output of the NOT gate will be lo� Thus the
input changes to lo� followed by a change of output to hi� which was our starting point�
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Similar oscillating behaviour is obtained for an initial input lo� The semantic model used
for picoella results in the output �bit� which is the unde�ned� or �don�t know� value�
re�ecting accurately the intuition that the output is not stable� In fact� the semantics
computes the least �xed point solution of the circuit in a �nite number of steps� It is
important to realise that these are results concerning all circuits� not particular instances�
The totality result depends on the monotonicity of the dynamic semantics� if we have more
information about the input of a circuit� we can say more about its output� Loosely� if the
input becomes more de�ned� the output becomes more de�ned� The reduction function
also preserves the �shape� of the program �an adder does not become a multiplier after
some time!� In other words� only the contents of delays changes over time� A detailed
account of the embedding may be found in ��
� ��
�

� Applications

Explicitly separating the structure and behaviour of circuits leads not only to a concep�
tually clearer picture� it also permits a number of di�erent applications to be combined
in one overall framework� Consider the following diagram�
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Starting at �formal hdl descriptions�� we can derive properties about the formal semantics
in the proof system� However� it is also possible to derive properties about individual cir�
cuits� which can then be used� for example� to show that they satisfy their speci�cations�
In the remainder of this section we discuss three other applications� formal symbolic sim�
ulation� synthesis of circuits both interactively and using functions� and transformations
of hardware�
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��� Formal Symbolic Simulation

We can derive operational semantics rules such as reduceSeqCons and reduceDelay

shown previously from the de�nition of the semantic function reduce� These rules may
be used to check semantic derivation trees� given a circuit� input� and output� �nd a
corresponding theorem� This is not terribly useful� because we have to supply the output
from the start� However� recall that the Lambda proof system has meta�variables which
may be �exible� Flexible meta�variables may be instantiated or specialised throughout
a proof� Thus� rather than trying to prove� for example� the following theorem �an AND

gate with input �hi�lo� outputs lo��

��������������������

� �env � IF �hi� lo� MATCHES �hi�hi� THEN hi ELSE lo

� �lo�IF �hi� lo� MATCHES �hi�hi� THEN hi ELSE lo� � Type ��

which has the input �hi�lo� and the output �lo�IF �hi� lo� MATCHES �hi�hi� THEN

hi ELSE lo� hard�wired in� we derive instead a more general rule with a symbolic output
�out �newcirc �� We also introduce an abbreviation AND which is parametrised on the
input circuit circ �

� out �� �case match �hi�hi� out � of uu �� bit 
 tt �� hi 
 ff �� lo�

� �env � circ � �out ��circ� � � TyTuple �Type ��Type ���

��������������������

� �env � AND��circ � � �out �AND��circ� �� � Type ��

� val reduceAND � popGoal���

val reduceAND � � � rule

The semantic derivation for an AND gate with a general input has been collapsed into
one derived rule reduceAND� It states that to evaluate an AND gate� one has to evaluate
the circuit circ which supplies its input �the �rst premise�� and then has to check which
branch of the IF statement is taken �the second premise�� By deriving this sort of rule
�rst for simple gates� then for components built from these gates� one can build �skeleton
rules�� and computations can be speeded up greatly�

To return to our motivation for this rule� to compute the output of an AND gate with
input �hi�lo� we apply the above rule schema to the goal

env � AND���hi�lo�� � �out �newcirc � � t

where out � newcirc � and t are �exible meta�variables �i�e� they may be instantiated with
other terms�� Indeed� applying reduceAND to the goal� and discharging the two premises
will specialise out � newcirc � and t to lo� AND���hi�lo��� and Type � respectively�
While this is interesting� it would be much faster to use a real simulator for the hdl to
simulate �xed value inputs� Consider� however� that for both �lo�lo� and �lo�hi� the
output will be lo� In a conventional simulator we would need to simulate the AND gate
twice� but using the proof system we can derive the output lo from the input �lo�x��
where x is a proof system variable� The fact that we can obtain an output without
instantiating x with lo and hi is very important� It removes the need to exhaustively

simulate the circuit� we can use the symbolic capabilities of the proof system to cut
down the number of inputs or test vectors� Exhaustive simulation is not feasible for
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large circuits because the number of possible input patterns grows exponentially with the
number of inputs� Symbolic variables such as x are not to be confused with �don�t care�
values� which are part of the value domain� Although in this particular case �don�t care�
values could have been used to the same e�ect� the former may be arbitrary formulae�
introducing relationships between inputs� e�g� AND��x��x��

If we generalise this even further we can leave the input completely abstract �in say�
to derive a symbolic output�

�if in � �hi�hi� then hi else lo�AND��in ��

�This holds only if the input is restricted to values without �don�t know� elements�� The
computation has been pushed completely into the answer which is not possible with
�don�t care� values� We could do this for the complete circuit� but the resulting term
would probably be as complicated as the circuit description itself� We have progressed
from simple values as inputs and outputs� via �don�t care� values �
�
� to symbolic values
and formulae ��� ��
�

While current symbolic simulators can handle the above examples� the use of a proof
system becomes essential when we deal with parametrised circuits� and circuit speci�ca�
tions� The AND gate� as de�ned above� takes its input circuit as a parameter� This is a
trivial example of the use of plug�in components� or abstract hardware� To simulate a
circuit which contains a hole or plug�in component� the input�output behaviour of the
missing subcomponent needs to be supplied� The speci�cation of the circuit� which should
be available� can be used for this purpose� In fact� this strategy allows di�erent people to
work on one design in simultaneously� to simulate the whole design� parts of which may
not be �nished yet� speci�cations of the missing subcomponents are used� When a part
has been completed it must be proved to satisfy its speci�cation� After this has been done
using the proof system� the part may be inserted into its context in the larger design�
However� as the proof of correctness implies that the speci�cation describes the behaviour
of the implementation	 it makes sense to continue to use the speci�cation for simulation�
In general� a speci�cation will state the behaviour at a higher level of abstraction �for
example� an adder is speci�ed as adding two natural number� rather than two bit vectors��
Thus� instead of computing an addition using the bit vectors in the implementation� the
bit vectors are abstracted to natural numbers which are then added using natural number
addition and the result converted back to a bit vector� In other words� the sum would
be computed by the expression bitsof ��natof x � natof y� mod 
N �� where natof is the
abstraction function� and bitsof its inverse� This technique should substantially speed
up simulations� Although mixed�level simulators handle part of this functionality� they
cannot guarantee that the high and low�level descriptions� interpreted as the speci�cation
and implementation respectively� have the same behaviour �other than through exhaustive
simulation� which is not acceptable�� Moreover� the speci�cations used in the proof system
need not be restricted to hdl programs� they could be any term in the logic with the
appropriate result type� possibly non�algorithmic or non�executable�

�The relationship between implementation and speci�cation is probably more subtle than this� but
the argument remains the same�

��



��� Formal Circuit Synthesis

Two distinct types of synthesis are possible in the proof system� functions which generate
correct hardware ��
� and interactive synthesis methodologies�

Veri�ed Hardware Generators

We can write functions which manipulate hardware descriptions� we have already en�
countered the dynamic semantics function reduce� Consider the following function which�
given a natural number N � returns the description of an N bit adder�

fun nadd onebitadder �S �� x � onebitadder x 


nadd onebitadder �S �S n�� x �

LET x IN �
 ���xN��� x�� �yN��� y��� c
� 
�

LET nadd onebitadder �S n�

���Var ���������	�� �Var ������	��	��� �Var ���	�� IN

LET onebitadder ���Var ������������ �Var ������	������

�Var ���	�� IN

���Var ������ �Var ������� �
 sum 
�

�Var ���	�� �
 carry 
��

Unfortunately� due to the sparse nature of picoella� circuit descriptions are not always
very readable� nadd� �expr �� expr� �� natural �� expr �� expr is a partial func�
tion� there is no such a thing as a zero bit adder� A one bit adder with input ��x
� y
��

c
� uses the full adder component onebitadder� on which nadd is also parametrised� Am
N�� bit adder with input ���xN� x�� �yN� y��� c
� uses an N bit adder with input
��x� y�� c
� connected to a full adder with input ��xN�yN��cN��

The most important aspect of hardware generating functions is that they may be
proven correct� That is� it is possible to prove a correctness statement for all word sizes�

	c� FULLADDER SPEC��c� �
	N � �� 	x� y� c� s� c�

� e� �� nadd c N ��x� y�� c� � ��s� c��� e���
NBITADDER SPEC��N�x� y� c� s� c

��

Thus� given a correct full adder c� all N bit adders generated by nadd using it� are
guaranteed to be correct�

Interactive Synthesis

A di�erent approach to hardware synthesis is to provide a methodology for interactively
constructing correct hardware� A number of valid design rules are given� and a circuit is
built using these rules only� In ���
 hardware is described in term of higher�order logic� but
their approach can also be used with hdl descriptions� Fourman et al� ���
 also synthesise
hardware interactively� but use �exible meta�variables to represent circuits which are still
to be re�ned� and are therefore not limited to a �xed set of design rules� This work uses
the Lambda system and can also be adapted to use hdl descriptions as the underlying
representation for circuits�

�




Operational semantics rules such as reduceDelay of Section � can be used to syn�
thesise circuits� Initially the circuit is a �exible meta�variable� the circuit is completely
unconstrained� Applying operational semantics rules does not only restrict outputs� it
also specialises the circuit� For example� applying the reduceTuple to the circuit circ
forces it to become a tuple �circ ��circ ��� with a tuple �out ��out �� as output� Suc�
cessively applying operational semantics rules simultaneously constructs the circuit and
its output� To make this approach useful� su�ciently high�level building blocks must be
provided� To construct a circuit in a top�down fashion �i�e� successively re�ne subcom�
ponents� rules are applied in a goal�directed� or backward manner� Conversely� forward
rule application corresponds to bottom�up synthesis ���� Chapter �
� The results of both
top�down and bottom�up synthesis must be veri�ed after they have been designed� in
contrast to ���
� and to lesser extent ���
� where a design and its proof of correctness are
constructed simultaneously�

��� Correct Hardware Optimisations

Hardware designs� whether originating from synthesis functions or hand designs� can often
be optimised by applying transformations� Rather than trying to produce an e�cient
design from the outset� circuit optimisations can be used e�ectively to massage an existing
design to produce a smaller layout� faster chip� etc� Optimisations can be treated formally
in our framework� transformations can be rule�based ��
� or functions can be written to
detect certain patterns and replace them by others ���
� Both forms can be veri�ed by
showing that the behaviour of a circuit is either unchanged by the optimisation� or more
favourable in some sense� e�g� lower latency or higher throughput� If a transformation
changes an aspect of a circuit description which is not addressed in the semantics �e�g�
layout area� the two descriptions will be behaviourally equivalent� even though one version
of the circuit will be preferable to the other� Other aspects� such as latency� will be
derivable using the semantics� In this case an optimisation will change the circuit�s
behaviour but in an acceptable fashion� It is possible to base an entire design style upon
transformations� as described in ��
�

� Conclusions

Hardware description languages are widely used to aid the design process� A mathemat�
ical basis for hdls allows formal methods� implemented in proof systems� to be applied
to hardware design and description� Our approach clari�es important issues concerning
behaviour and structure which have not been addressed properly in formal hardware veri�
�cation� The de�nition of a formal semantics for a subset of the hardware description
language ella� and its encoding in the Lambda proof assistant show how various meth�
odologies can be integrated� The ability to prove properties of the simulator mechanism
for the hdl� symbolic and mixed�level simulation� various types of synthesis� and trans�
formations of hardware have all been treated formally� A number of practical issues have
to be addressed� although ella may be translated into the picoella language� it is too
restrictive for more than toy examples� and veri�cation of individual circuits tended to be
very slow� However� we believe that our aim� to �nd a suitable integrated methodology
for hardware design and veri�cation using hdls� has been successful�
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