
Operational Semantics Based Formal Symbolic Simulation
�

K� G� W� Goossens
Laboratory for Foundations of Computer Science

Department of Computer Science
University of Edinburgh
The King�s Buildings
Edinburgh EH� �JZ�

Scotland� U�K�

August ����

Abstract

This paper describes the development of progressively more powerful and ab�

stract hardware simulators� A small computer hardware design and description

language picoella is then introduced� followed by its formal semantics� Using a

number of small examples� we will then show the how this formal semantics may

be used within a proof system as a sophisticated simulation tool� Examples include

some full adders� a general N bit adder� and two parity checkers�

Keyword Codes� I����� B����� F��
Keywords� Deduction and Theorem Proving� Integrated Circuits� Design Aids� Logics
and Meaning of Programs

� Introduction

This introduction describes the development of various kinds of hardware simulators�
Following this� a small hdl called picoella� is introduced in section �� Its formal se�
mantics� and a brief account of this semantics� embedding in a proof system are described
in section �� Section 	 illustrates the use of the semantics in the capacity of a symbolic
simulator� as described in the remainder of this introduction� Finally� integration with
other design and veri
cation methodologies will be discussed�

Modern hardware designs are complex� Conventional methods take many iterations
to arrive at an acceptable implementation� Increasing use of circuits in embedded sys�
tems� perhaps with some aspect of safety criticality� requires greater rigour in speci
c�
ation and design� Though exhaustive testing might allow designers to achieve a high
degree of con
dence in small circuits� exhaustive testing of modern designs is impossible
both on time complexity and cost grounds�

�A shorter version of this report is to appear in the proceedings of the workshop on Higher Order
Logic Theorem Proving and Its Applications� held at IMEC� Leuven Belgium in September �����

�



Breadboarding is the process of constructing the design and then using this prototype
to perform tests� This is only feasible for small designs� With greater integration and
density of components this method becomes prohibitively expensive� The 
rst move
away from using real hardware is to simulate the circuit� Greater complexity encourages
the use of structured circuit descriptions� leading to hardware description languages
such as ella� �Com
�� and vhdl �Ins���� It is possible to design simulators for such
languages which model the behaviour of a circuit described in the language� There is a
wide spectrum of such languages� from the very low level �e�g� spice �Met��� which uses
di�erential equations�� to high level languages such as ella and vhdl� which contain
conventional programming language constructs�

One of the problems with both breadboarding and value simulation is that for any
substantial circuit the number of possible inputs �or test vectors� becomes very large�
Circuits with internal state are even harder to verify in this manner� By introducing
extra values in the value domain� such as don�t know and don�t care� the number of test
vectors may be reduced substantially� If a particular input is irrelevant for a particular
test� its value can be set to don�t care� instead of having to simulate the test twice� with
the value set to true and false respectively� A number of methods to extend the basic
set of values� such true and false� is described in �Hay����

The mossym simulator �BS
�� is not limited to 
xed values as input� but also allows
symbolic variables and boolean formulae� That is� we may set an input to the symbolic
variable x� say� Wherever x appears we cannot assume anything about its value� so that
the result of the operation may be a formula� Note that x is not an extra value in the
value domain� but ranges over all these values� Of course� this puts an extra burden on
the simulator which now needs to be able to handle arbitrary formulae instead of simple
values� It may also require algebraic capabilities to simplify intermediate formulae� In
theory� we need to do only one simulation� namely the one with all the input values
set to variables� The result would be an expression which would describe the circuit�s
behaviour� However� this expression may be as complex as the circuit description�

In mossym we have an asymmetry� we are permitted abstraction over data but not
over circuits� In other words� we may have symbolic variables ranging over data values�
but we are not allowed circuits containing symbolic variables� Symbolic variables are
abstract hardware� This idea is not as strange as it may seem� plug�in components are
in e�ect abstract hardware� certainly as long as the circuit is under development� Why
would it be useful to have this capability� It would seem that� since we are dealing with
the design of a certain circuit� we would only want to simulate that circuit� Consider�
however� that large circuits are designed in a modular fashion to allow a number of
people to work on separate parts of a circuit at the same time� When a subcomponent is
ready� it has to be simulated in a larger context� all of which may not be completed� The
availability of an abstract implementation for un
nished parts of the design would enable
the component to be simulated in its correct context� A suitable simulator would allow
the evaluation of a circuit containing a mixture of concrete and abstract components�
Of course� certain properties of the abstract components may be needed to arrive at an
output� but these should be available from their speci
cations� We use the speci
cation
of the abstract components to simulate them as long they are not available� Modifying
a conventional simulator to deal with these extensions would completely transform it�

�
ella is a trademark of the Secretary of State for Defence� United Kingdom�

�



Mathematical proof systems� in contrast� already have the capability to deal with ab�
stract values of any sort� �This assumes that we work within a suitably powerful logic�
such as higher order logic�� If we use a hdl to describe circuits and as input to the simu�
lator� the hdl needs to have a precise mathematical de
nition to be used in conjunction
with a proof system� The approach we advocate here uses a formal de
nition of the
behaviour of a hdl and uses it within a proof system to provide simulation capabilities�

� picoELLA

picoella is derived from ella �Com
��� It contains the �active ingredients� but lacks its
syntactic sugar� picoella contains the following constructs�

Type de
nitions� these are either enumerated types� such as TYPE Signal � Hi �

Lo� or tuple types such as TYPE twobool � bool � bool�
Local declarations� LET x � e IN e� de
nes a local name x for a wire �or signal��

which may be used in e�� Circuit descriptions may be structured using these declarations�
Multiple use of a name such as x corresponds to a fan�out of the signal� Recursive
declarations allow the description of feedback� an example of which is shown at the end
of this section�

Constants are built up using constructors such as Hi� or �type representing the
unde
ned� or don�t know value of type type� or tuples of constants�

Tuples and indexing are straightforward� �e��e���i	 behaves the same as ei� for
example� Although� strictly speaking� indexing is not needed it facilitates decomposition
of circuit descriptions� as we shall see in the examples�

The IF statement� or multiplexor has the form IF e MATCHES chooser THEN e


ELSE e�� A chooser is a pattern against which the output of circuit e is matched� If
it matches� the output of the 
rst branch is the result of the IF� If the output of e
and the chooser do not match the ELSE part is chosen� A third possibility is that the
output of e is insu�ciently de
ned to decide between the two branches� In this case�
the unde
ned value �type �of the correct type� is the result� For example� consider the
NOT gate IF �Signal MATCHES Hi THEN Lo ELSE Hi� If the unde
ned� or don�t know
signal �Signal turned out to be Hi then the output would be Lo� On the other hand�
if it were Lo� the output would be Hi� The unde
ned output �Signal therefore re�ects
our intuition that we don�t know what the output should be� �In some cases it would be
possible to deliver a more de
ned value� but the current semantics re�ects the informal
language reference manual �Com
��� and is pessimistic in these instances��

The delay construct introduces a discrete and linear time base into the language�
which may be modelled using the natural numbers� The output from circuit e at time
t will be output by Delay�ct�e� at the next time step t� �� At the current time t� the
value ct is the result� This shows that the state of the delay is explicit in its description�
This contrasts with other languages� where it resides in a memory or store� picoella
dispenses with this� and can use a simpler environment instead� as we shall see later�
However� as a result of the explicit representation of the state� a new circuit description
must be evaluated at each time step� The result of an evaluation consists therefore of a
value output together with a description of the circuit at the next time step� The type of
the dynamic semantics is therefore environment � expression � �value � expression��

As an example� consider the following circuit which implements a parity checker� It

�



returns Hi at time t � � if there have been an even number of Hi�s on the input signal
input during the closed time interval ��� t�� At time zero it outputs Hi�

LET INIT �Signal

REC xor � DELAY �Hi� IF �input�xor� MATCHES �Hi�Lo���Lo�Hi�

THEN Hi ELSE Lo�

IN xor

� A picoELLA Semantics and Its Embedding in Higher Order

Logic

Few hdls have a precise de
nition� In practice the simulator serves as this de
nition�
but this leads to problems when di�erent implementations present con�icting outputs�
A formal semantics may be used to give a mathematical description of the behaviour
of a hdl� i�e� how a simulator should behave�� For example� a structural operational
semantics �Plo��� de
nes the behaviour of a construct in terms of its subexpressions�
General properties� such as termination of any simulation within a 
nite number of steps�
may be proved about the semantics �and hence the behaviour of conforming simulators��
Various subsets of ella �Goo
�� BGM
�� BGL�
�� Hil
��� Funnel �SGEA
�� and vhdl

subsets �WMS
�� SB
�� vT
�� are some of the languages that have been given formal
de
nitions�

Although a formal semantics is very useful as a mathematical reference manual� one
can also use formal semantics as the basis for design tools� By embedding the semantics
in a logical system� supported by a proof assistant such as Lambda� �FFM
�� or hol
�Gor��� it is possible to provide support for the formal development of circuit design
�Goo
���

The semantics for picoella �Goo
�� takes the form of a structural operational se�
mantics� It comprises a static semantics describing which programs are well�typed� and a
dynamic semantics de
ning the run�time behaviour of well�typed programs� We will not
discuss the static semantics here� it su�ces to say that it is relatively straightforward�
picoella semantics rules fall into two categories� those dealing with time� and those
dealing with the evaluation of expressions within one time step� The ReduceSeqCons
rule falls into the 
rst class�

�� � exprt � ot� exprt�� tl� � � exprt�� � tl�� exprt�N
it �� tl� � � exprt � ot �� tl�� exprt�N

Here exprt is the program at time t� � the environment in which the program runs�
and it �� tl the input stream� �� is � with input value it adjoined �this will be made
more precise later�� This rule shows that at time t we run the program exprt with input
value it in environment ��� The output value ot is added to the output stream� and the
new program exprt�� is evaluated with the remainder of the input stream� As explained
previously� since the state of the circuit is explicit in its description we need to evaluate

�Note that the implementation of the simulator may use any model� as long the input�output relation
obeys the de�nition� The semantic de�nition should be clear and simple� not necessarily e�cient�

�
Lambda and Dialog are products of Abstract Hardware Limited�

	



a new circuit at every time step� A typical member of the second category of rules is the
ReduceTuple rule�

� � expr� � v�� expr�

� � � expr� � v�� expr�

�

� � �expr�� expr��� �v�� v��� �expr�

�� expr
�

��

To evaluate a tuple in environment �� both subexpressions must be evaluated in the
same environment� The rule for the delay shows the use of the embedded state�

� � expr � v� expr�

� � DELAY �c� expr�� c� DELAY �v� expr��

The output from the delay is its latched value c� The new description of the delay� to
be evaluated at the next time step� contains the output v from expr at the current time
step� In other words� it has latched this clock cycle�s output�

The semantics described above� has been embedded in the Lambda proof system
�FFM
��� The Lambda proof system implements a polymorphic constructive higher
order logic of partial terms �FF
���� An existence predicate E is provided to reason about
partial terms� Equality �� compares two denoting objects� weak equality �or equivalence�
��� is true if either both objects do not denote� or if both denote and are equal� The
iota operator is used for implicit descriptions� iota x� 
P�x� de
nes the unique value
x� which satis
es property P� If no such x� or di�erent x exist� �iota x� P
�x�� is
unde
ned� The functional languageml �HMT�
� is used as a command language� A large
subset of ml is also used to de
ne new data types and operations on data types within
the logic� The soundness of the system cannot be compromised through new de
nitions�
Lambda returns a number of rules characterising the new ml data type de
nitions� such
as existence of constructors� �in�equality rules and a structural induction principle� For
functions� existence of the function and its partial applications �functions may be partial�
but partial applications always denote�� a minimality rule and rewrite rules are given�
These new rules may be used to de
ne derived rules and tactics� Tacticals can be used
to combine tactics into rewrite strategies� or symbolic simulation commands� Examples
are OpSemTac and safeOpSemAllTac in section 	���

A type const has been encoded using the ml de
nition system� representing picoella
constants�

datatype const � Cons of natural � natural � CoTuple of const � const�

Cons�i�t� encodes the ith constructor of type t� Cons���t� represents �t which is
the unde
ned� or don�t know� value of type t� A constant is therefore a constructor
or bottom value� or a tuple containing constants� To illustrate structural induction we
consider the choosers data type used to encode patterns in the IF statement�

datatype choosers � C of const

� B of choosers � choosers

� T of choosers � choosers�

B�ch�ch�� represents the bar� or disjunctive chooser� it matches with a constant if at
least one of ch and ch� does� T�ch�ch�� is the tuple� or pairing chooser� matching if
both subchoosers do� C c is the constant chooser� C �Cons ���type�� represents the
wild card chooser type� it always matches� It is not allowed to match for the bottom

�Note that we use Lambda version ���� The more recent version 	�
 uses a di�erent logic�

�



value �type� as this would permit non�monotone circuit descriptions� Lambda returns
the following choosers structural induction rule for this data type�

��	 E r
� E r� P
�r
�� P
�r� �� P
�T �r
�r��

��	 E r�� E r�� P
�r��� P
�r�� �� P
�B �r��r���

�
	 E r� �� P
�C r��

��������������������

E w �� P
�w�

There are three premisses� each containing some hypotheses� E r� is an existence hy�
pothesis� asserting that r� denotes� P
�r
� states that the property P holds for r
� To
prove a property P of all choosers w three subgoals must be proved� in case of the second
premise� for example� it must be shown that P holds for B�r��r�� provided it holds
for r� and r�� and r� and r� denote� The type representing expressions� or circuits is
de
ned as follows�

datatype expr � Const of const

� Tuple of expr � expr

� Let of expr � expr

� Var of natural

� Delay of const � expr

� If of expr � expr � expr � choosers

� Index
 of expr

� Index� of expr

� LetRec of const � expr � expr�

Note that no constructor is present for TYPE� Types are dealt with on a meta�level� i�e�
using Lambda�s facilities� rather than at the expr object level� To embed the LET oper�
ator the de Bruijn encoding of lambda abstractions is used �dB���� The bound variables
of lambda expressions are encoded as natural numbers indicating the distance �meas�
ured in intervening lambdas� away from the de
ning lambda� Thus �x��y��x� �x� y�� a b

would be encoded as ����� ��� ��� a b� In picoella this corresponds to encoding LET x �

a IN LET y � b IN �x��x�y�� by Let �a� Let �b� Tuple �Var 
� Tuple �Var 
�

Var ������ The de Bruijn encoding was su�cient for our purposes because the envir�
onment is used only as a stack� Work using the hol system has usually represented
names by strings� the value environment has the type string �� const �Mel��� vT
���
Finally� the dynamic semantics can be de
ned as a function Reduce� Its type is Reduce�
const list �� expr �� �const � expr�� where const list represents the value en�
vironment�

�



fun Reduce l �Let �e�e��� �

let val �c� f� � Reduce l e

val �c�� f�� � Reduce �c��l� e�

in �c�� Let �f�f���

end �

Reduce l �Var n� � �elem l n� Var n� �

Reduce l �If �e�e��e���ch�� �

let val �c�d� � Reduce l e

val �c��d�� � Reduce l e�

val �c���d��� � Reduce l e��

in � case match ch c of

tt �� c� �

ff �� c�� �

uu �� bottom c�� If �d�d��d���ch� �

end � � � ��

The LET statement reduces the de
ning expression� and pushes the value result on the
stack l �i�e� stores it in the environment�� Evaluating a name corresponds to a lookup
in the environment � in the dynamic semantics� and a lookup in the stack l in the
embedding�

The IF construct evaluates all of its subexpressions� It then returns �tt� the result
of the 
rst branch if we have a de
nite match� or �ff� if we have a de
nite no�match�
the result of the second branch� or �uu� a bottom value of the appropriate type if we
cannot decide between the two branches�

We have proved a number of properties of the embedded semantics using Lambda�
For example� the reduction function is monotone� that is� if the input becomes more
de
ned� the output becomes more de
ned� Also� the reduction function preserves the
shape of the program �an adder does not become a multiplier after some time��� In other
words� only the contents of delays changes over time� Moreover� we have shown that
even in the presence of delayless feedback loops the reduction function terminates in a

nite number of steps� In fact� the semantics computes the least 
xed point solution
of the circuit� It is important to realise that these are results concerning all circuits�
not particular instances� A more detailed account of the embedding may be found in
�Goo
�� Goo�� For the remainder of this paper� with the exception of subsection 	��
which deals with feed�back� an embedding without the LET REC has been used� At the
time this work was carried out the operational semantics rules dealing with IF were
slightly simpler in the embedding without the LET REC� In the current system there is
no di�erence�

Using these de
nitions� and derived properties� the operational semantics rules de�
scribed at the start of this section may be derived within the proof system�� These rules
encode both the static and dynamic semantics� and are listed in the appendix�

The rule ReduceSeqCons corresponds to ReduceSeqCons previously� Rules shown in
the typewriter font denote the embedded rules� those in roman font the �paper� rules�

�This is in contrast with work by van Tassel �vT��
� which starts directly with the semantic rules�
Using the hol inductive relation package more general relational semantics may be encoded� In Lambda
version ��� we are limited to functional semantics�

�



�� �instream � env �� circ
 �� �outstream �circ� ��

�� �i
 �� env �� circ �� �o
 �circ
 � � t �

��������������������

�� �i
 �� instream � env �� circ �� �o
 �� outstream �circ� ��

To evaluate a program circ with a non�empty input stream i
 ��instream � the head
of the input stream is pushed onto the environment env � This corresponds �� in the
paper rules� circ is then evaluated within this time step� The remainder of the input
stream is then evaluated using the new circuit circ
 � Finally� the output o
 is pre�
pended to the resulting output stream� It is a pretty printed version of�

E instream � E env � E circ
 � E t

�� ReduceSeq env circ
 instream �� �outstream �circ� �

E �i
 �� env �� E circ � E t

�� typeOfExpr �map typeOfConst �i
 �� env �� circ �� �t �true�

�n Reduce �i
 �� env � circ �� �o
 �circ
 �

��������������������

E �i
 �� instream �� E env � E circ � E t

�� ReduceSeq env circ �i
 �� instream � �� �o
 �� outstream �circ� �

This is only one possible underlying format we could use for the embedded operational
semantics rules� Their di�erences are mainly pragmatic and do not a�ect any of the res�
ults presented here� Henceforth we will only show pretty printed output� Unfortunately�
no quotation�anti�quotation system is available� so that any input must still use the raw
syntax� The rule for the multiplexor� ReduceIf� is similar�

��	 �� E t

��	 �� o� �� �case match chooser out of

uu �� bottom o
 � tt �� o
 � ff �� o� �

��	 �� chooser � t

�� �env �� branch� �� �o� �branch�� � � t
 �

�� �env �� branch
 �� �o
 �branch
� � � t
 �

�� �env �� circ �� �out �circ� � � t �

��������������������

�� �env �� IF circ MATCHES chooser THEN branch
 ELSE branch� ��

�o� �IF circ� MATCHES chooser THEN branch
� ELSE branch�� � � t
 �

There are some extra hypotheses ���	 and ��	� dealing with the static semantics� the
choosers must be well�typed and have �denoting� type t � Note that branch
 and
branch� must have the same type t
 � which is also the type of whole IF� The output
of the IF is computed in premise 
ve� The three cases �match� no match and don�t
know� are represented in the case statement by tt� ff and uu respectively� The IF is
strict� both branches must always be evaluated� Four other rules dealing with the IF are
particular instantiations of this rule� as we shall see later�

It is important to realise that circ � t � etc� are meta�variables� The ReduceIf�

rule is really a rule schema� which may be instantiated in an in
nite number of di�erent
ways� When it is applied to a particular IF statement such as IF Hi MATCHES Hi THEN

Lo ELSE Hi� circ � chooser � branch
 and branch� will be uni
ed with Hi� Hi� Lo�
and Hi respectively� This uni
cation is re�ected in every place where these variables
occur in the rule� The uni
cation works both ways� meta�variables in a rule are uni
ed

�



to the current goal so that the rule applies �as in the example below�� But meta�variables
in the goal may also be uni
ed �specialised� made more concrete� for the rule to apply�
We will see examples of this later on� In Lambda meta�variables may be �exible or rigid�
The former are used to stand for some term to be determined as the proof proceeds� the
latter require proofs to be schematic in the variable� Rigid variables ensure that a general
result� rather than an instantiation of the result� is proved�

� Examples

In this section we will illustrate the possible uses of an embedded operational semantics�
First we will simulate a simple AND gate in various ways to illustrate the basic principles�
Following this� some one bit adders and a general N bit adder� parametrised on the
word size and one bit adder subcomponent� will be shown� Finally� two parity checker
implementations will be discussed�

��� A Simple AND Gate

An AND gate may be described in picoella as

IF e MATCHES �Hi�Hi� THEN Hi ELSE Lo

Here e is the input to the circuit� Signal� Hi and Lo have been de
ned as Cons���
��
Cons�
�
� and Cons���
� respectively� All of Signal� Hi and Lo have type Type


� We will simulate an AND gate with �Hi�Lo� as input using the ReduceIfFf and
ReduceConst rules� The rule ReduceIfFf is comparable to the rule ReduceIf� of the
previous page� but always chooses the ELSE branch�

����� Level 
 �����

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo ��

�Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

� apprl ReduceIfFf�

����� Level � �����

��	 �� E t

��	 �� match �Hi� Hi� out �� ff

��	 �� �Hi� Hi� � t

��	 �� �env �� Lo �� �Lo� Lo� � Type 
�

��	 �� �env �� Hi �� �o
 � Hi� � Type 
�

�
	 �� �env �� �Hi� Lo� �� �out � �Hi� Lo�� � t �

��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

We now have six subgoals to prove� the 
rst of which deals with the input to the IF�
The second and third subgoals compute the THEN and ELSE branches respectively� As
stated earlier� both branches must be evaluated� because the result circuit is always used
to describe the IF at the next time step� Note� however� that the value output o
 does






not appear in the conclusion of ReduceIfFf� It is for this reason that it has not been
uni
ed with a concrete term� like branch
 for example� The fourth premise states that
the chooser must be well�typed� in this case it has type t � t is an as yet uninstantiated
meta�variable� As we shall see below� evaluating premise � forces t to become a tuple
type� We also have to prove that the type denotes in premise �� Subgoal 
ve expresses
the constraint that we choose the ELSE part of the IF� the result out of the input circuit
must not match with the chooser�

We may now apply ReduceTuple to reduce the tuple in premise � to two subgoals�
Following this we apply ReduceConst to premises one to four�

� applyTacn �
������	 �doRule ReduceConst��

����� Level � �����

�� E �TyTuple �t
 �t� ��

��	 �� match �Hi� Hi� �Hi�Lo� �� ff

�� �Hi� Hi� � TyTuple �t
 �t� �

��	 �� Lo � Type 


��	 �� Hi � Type 


��	 �� Lo � t�

�
	 �� Hi � t


��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

The tactical applyTacn l t applies tactic t to all premises in the list l� doRule con�
verts a rule into the tactic which applies the rule if it is applicable� and fails otherwise�
tryRule� on the other hand� is the identity tactic if the rule fails to apply� tryRules

and doRules are similar functions operating on lists of rules�
As mentioned earlier� the type of the chooser has been constrained to a less general

type TyTuple �t
 �t� �� Evaluating premises one and two will specialise it further to
TyTuple �Type 
�Type 
�� as the type of Hi and Lo is Type 
� All the subgoals� except
��	� are now dealing with the static semantics� or typing of terms� It makes sense to deal
with the static and dynamic semantics simultaneously because they are both structural
semantics� Moreover� the dynamic semantics only evaluates well�typed expressions�

Using applyTacn �
������	 �doRule ReduceHi elseR ReduceLo�we discharge pre�
mises one to four� Using ReduceMatchTac� a tactic which rewrites expressions involving
match� we prove premise six�

� applyTacn ��	 ReduceMatchTac�

����� Level � �����

�� E �TyTuple �Type 
�Type 
��

�� �Hi� Hi� � TyTuple �Type 
�Type 
�

��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

��



� applyTac �doRules�ReduceT�ReduceC�ReduceHi	��

����� Level � �����

�� E �TyTuple �Type 
�Type 
��

��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo�IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

� applyTac �doRules�ReduceTyTuple�ReduceType�ReduceSn�Reduce�	��

����� Level � �����

��������������������

�� �env �� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo

�� �Lo� IF �Hi� Lo� MATCHES �Hi�Hi� THEN Hi ELSE Lo� � Type 
�

� val example
a � popGoal���

val example
a � � � rule

doRules �r
�r�	 is a tactic which applies rule r
 and then applies r� to all result�
ing subgoals� Thus ReduceC and ReduceHi are applied to both subgoals resulting from
ReduceT� The theorem is saved as example
a so that we can apply this derivation in one
step in the future�

While this is very instructive� it becomes tedious very quickly to this sort of proof
by hand� Tactics may be used to great advantage in this sort of regular reasoning� The
whole previous example could have been done using one general purpose tactic�

val OpSemTac � �repeatT �nonTrivT �tryRules OpSemRules��� thenT

�tryT �theoremT ReduceMatchTac�� thenT

�tryT �theoremT ReduceTypeTac���

applyTac OpSemTac�

This tactic repeatedly applies one or more of the standard operational semantics rules
until none apply� It then applies ReduceMatchTac followed by ReduceTypeTac� to rewrite
any typing subgoals� These last two tactics are applied to a subgoal only if they discharge
it�

The circuit as it stands is not very useful� as it deals with only one particular input�
Moreover� we had to supply the output from the simulation at the start� We will now
quickly redo the example� but using meta�variables as output� These will be �exible� so
that they may be instantiated as we compute the output to a 
xed answer� We will also
use an abbreviation for the AND gate� Unlike the abbreviations for Hi etc�� it has an
argument� Abbreviations are syntactic functions at the meta�level in the proof system�
They are distinct from functions at the object level� such as nadd which we shall see
later�

val Signal � Cons ���
��

val Hi � Cons �
�
��

val Lo � Cons ���
��

val AND
�e� � IF e MATCHES �Hi�Hi� THEN Hi ELSE Lo�

When a new goal is to be proven� all meta�variables are rigid� they cannot be �inadvert�
ently� instantiated� In general this is what is required� because the result so proved is
then more general� Every operational semantics rule has meta�variables such as env �

��



circ and t � which are uni
ed with the corresponding expressions in the premise it
is applied to� Consider the use of rule ReduceIf below for example� In this case we
want to specialise the meta�variables if required� so we make them �exible using the
flex command� A pop�up menu shows the current subgoal� and one selects subterms by
clicking on them with a mouse� The flex command is then automatically generated by
Lambda� so that it may be included in proof scripts for later use� We will now unfold
the abbreviation for AND�

����� Level � �����

�� �env �� AND
�circ � �� �out � newcirc � t �

��������������������

�� �env �� AND
�circ � �� �out �newcirc � � t �

� apprl ANDU�

����� Level � �����

�� �env �� IF circ MATCHES �Hi�Hi� THEN Hi ELSE Lo ��

�out � IF h MATCHES �Hi�Hi� THEN Hi ELSE Lo � t �

��������������������

�� �env �� AND
�circ � �� �out �AND
�h�� � t �

Note that the unfolding of the AND abbreviation is a�ects the meta�variable newcirc �
It is instantiated with AND
�h� because it is �exible� This is exactly what we want
in this case� we do not want abbreviations to become expanded from one time step to
the next� Often� rules such as ReduceHi� unnecessarily or incorrectly specialise �exible
meta�variables of the right type� Tactics such as safeOpSemAllTac� on page �	 take
great care to avoid this� ReduceIf is a third rule for the IF statement and can now be
applied�

� apprl ReduceIf�

����� Level � �����

�� E t 


�� T �C Hi�C Hi� � t 


�� �env �� Lo �� �o� �Lo� � t �

�� �env �� Hi �� �o
 �Hi� � t �

�� �env �� circ �� �out �h� � t 
�

��������������������

�� �env �� AND
�circ � �� �case match �Hi�Hi� out of

uu �� bottom o
 � tt �� o
 � ff �� o� �AND
�h�� � t �

ReduceIf defers the computation of the output of the IF by delivering a symbolic an�

swer� In this case� however� we would like to have a concrete value answer rather than an
expression describing what happens in the most general case� After undoing everything
using undoAll�� we prove the result we want by �exing type t and circuit newcirc �
expanding all the abbreviations using applyTac �doRules�ANDU�HiU�LoU�SignalU	��

nally followed by applyTac OpSemTac� OpSemTac uses the rule ReduceIf� rather than
ReduceIf� so that the required answer is obtained�

��



� applyTac OpSemTac�

����� Level � �����

�� out �� �case match �Cons �
�
�� Cons �
�
�� out 
 of

uu �� bottom �Cons �
�
�� � tt �� Cons �
�
� � ff �� Cons ���
��

�� �env �� circ �� �out 
�h� � TyTuple �Type 
�Type 
��

��������������������

�� �env �� AND
�circ � �� �out �AND
�h�� � Type 
�

� val ReduceAND � popGoal���

val ReduceAND � � � rule

The abbreviations for Hi etc� have been expanded so that this derived rule ReduceAND

may be used in general contexts without any extra work� This derived rule may be
thought of as abbreviating the whole proof tree which was generated to prove this rule�
Derived rules may be used very e�ectively in a hierarchical manner� Simulations may
be speeded up by passing rules which reduce subcircuits such as AND gates or adders
in one step� An alternative approach� is to write a tactic with the same e�ect� A tactic
would actually replay or recreate the proof tree� which would be as slow as rerunning
the proof� The application of a derived rule� in contrast� is as fast as a primitive rule�

All of the computations we have shown so far have been within a single clock tick
or time step� The following example shows how a delayed AND gate may be simulated
during two time steps� At every time step the value at the head of the input stream is
put on top of the stack� Var � indicates the 
rst value on the stack or environment env �
Delay �c�e� is a unit delay of expression e� Thus the circuit DELAY �Signal�AND
�Var

��� is an AND gate which takes its input from the input stream� and whose output is
delayed by one time step�

� apprl ReduceSeqCons�

����� Level � �����

�� ���Signal�Lo�	� env �� circ
 �� �outstream �newcirc ��

�� ��Lo�Lo� �� env �� DELAY �Signal�AND
�Var ��� �� �o
 �circ
 �� t �

��������������������

�� ���Lo�Lo�� �Signal�Lo�	� env ��

DELAY �Signal�AND
�Var ��� �� �o
 �� outstream �newcirc ��

� apprl ReduceDelay�

����� Level � �����

�� ���Signal�Lo�	� env ��

DELAY �out �circ� � �� �outstream �newcirc ��

��	 �� Signal � t

�
	 �� ��Lo�Lo� �� env �� AND
�Var �� �� �out �circ� � � t �

��������������������

�� ���Lo�Lo�� �Signal�Lo�	� env ��

DELAY �Signal�AND
�Var��� �� �Signal �� outstream �newcirc ��

Note that the output from circuit is known even though the output from the AND has
not been computed yet� We reduce premise � using ReduceAND� and the second premise
using ReduceSignal�

��



� apprl ReduceSignal�

����� Level � �����

�� ���Signal�Lo�	� env ��

DELAY �Lo�AND
�Var ��� �� �outstream �newcirc ��

��������������������

�� ���Lo�Lo�� �Signal�Lo�	� env ��

DELAY �Signal�AND
�Var ��� �� �Signal �� outstream �newcirc ��

We have now completed time zero� and can compute the next time step� Note that the
description of the delay now has state Lo� which was the output from the AND gate at
the previous time step� The second time step may be dealt with in exactly the same
manner� resulting in the following�

����� Level 
� �����

�� ��	� env �� DELAY �Lo�AND
�Var ��� �� �outstream �newcirc ��

��������������������

�� ���Lo�Lo�� �Signal�Lo�	� env ��

DELAY �Signal�AND
�Var ��� �� �Signal �� Lo �� outstream �newcirc ��

The 
nal application of ReduceSeqNil closes the input stream� Note that only at this
point do we know what the 
nal circuit looks like� in case we want to continue this
simulation�

� apprl ReduceSeqNil�

����� Level 

 �����

��������������������

�� ���Lo�Lo�� �Signal�Lo�	� env ��

DELAY �Signal�AND
�Var ��� �� ��Signal�Lo	�DELAY �Lo�AND
�Var �����

As in the previous example� we could have done all of this with the application of a
single tactic safeOpSemAllTac� �ReduceAND	�

fun safeOpSemAllTac� l �

repeatCutT �nonTrivT �

�tryRules �ReduceSeqNil�ReduceSeqCons	� cutThenT

�tryT �repeatCutT �nonTrivT ��tryRules �l � safeOpSemRules�� cutThenT

�tryTacs �ReduceCoTupleTac� ReduceConsTac�

ReduceETyTupleTac� ReduceETypeTac�

�theoremT ReduceTypeTac��

�theoremT ReduceSafeEqRhsTac�	��������

val safeOpSemAllTac � safeOpSemAllTac� �	�

This is a quite involved tactic which contains an outer loop for each time step of the
simulation� This loop 
nishes when no more changes have been made to any of the
subgoals� Firstly� rules involving time are tried� followed by repeated applications of the
standard operational semantics rules excluding those involving CoTuple� Cons� TyTuple
and Type� When no more rules are applicable� ReduceCoTupleTac is used� It applies
ReduceCoTuple� but only if no �exible meta�variables will instantiated as a result of this�
Similar tactics for Cons� TyTuple and Type are then tried� Finally� ReduceSafeEqRhsTac

�	



rewrites subgoals of the form expr �� case match � � � in a safe way� The tactical
cutThenT only retains the 
rst uni
cation of its 
rst argument� this decreases the amount
of memory which is used� as well as the execution time� Using two nested loops� rather
than a single loop forces the evaluation to take place a single clock tick at a time� This
dramatically increases the tactic�s speed due to the fact that many small expressions
are handled more e�ectively than one large one� Note that a list of derived rules may
be passed into the tactic� This means that an AND gate� for example� is reduced using
one derived rule application� rather a series of primitive rules� This facilitates faster�
hierarchical simulation because a circuit does not need to be �attened out into individual
gates to be simulated� A smaller memory usage is one of the practical advantages� It
is also easier to pinpoint errors in a circuit when it is simulated hierarchically because
boundaries of subcircuits are clearer when the subcomponents have not been �attened
out� One needs to open up a subcircuit only when it is found to be in error�

��� Adder circuits

One of the strengths of the embedding approach used here is that we can manipulate
circuit expressions just like any other term in the proof system� This allows us to write
functions operating on and delivering circuits� In this subsection we will describe two
implementations of a full adder� followed by an N bit adder generator� Formal circuit
generators were introduced by Brock et al� in �BH�
� BHY
���

We will 
rst show two implementations of a full adder� ADD
 is composed of two half
adders in the following manner�

val OR
�e� � IF e MATCHES �Lo�Lo� THEN Lo ELSE Hi�

val XOR
�e� � IF e MATCHES �Hi�Lo���Lo�Hi� THEN Hi ELSE Lo�

val HA
�e� � LET e IN �XOR
�Var ��� AND
�Var ����

val ADD

�e� � LET e �� ��x�y��c� �� IN

LET HA
��Var ���
	� IN

LET HA
���Var ���
	� �Var 
���	�� IN

��Var ���
	� �� sum ��

OR
���Var ����	� �Var 
���	���� �� carry ��

The outermost LET is necessary� in case the input expression contains Vars� It also avoids
duplication of the input circuit by using a fan�out� For example� without this LET� the
second half adder in ADD

�Var �� would incorrectly access the 
rst half adder as input�
We easily derive ReduceHA and ReduceADD
 using safeOpSemAllTac� In this example
we can see quite clearly how we use proof system capabilities to structure our circuits at
the object level� AND etc� are meta�level syntactic functions�

ADD� is built directly from three AND gates� two OR gates and two XOR gates�

val ADD�
�e� � LET e IN �� ��x�y��c� ��

LET AND
���Var ���
	��	� �Var ����	�� IN �� bc ��

LET AND
���Var 
��
	�
	� �Var 
���	�� IN �� ac ��

LET AND
��Var ���
	� IN �� ab ��

LET OR
��Var �� OR
��Var 
�Var ����� IN

LET XOR
��Var ����	� XOR
��Var ���
	�� IN

�Var ��Var 
��

Most of the complexity is due to the destruction and construction of tuple wires�

��



These two adders behave identically on fully de
ned inputs� However� ADD� may
be more de
ned than ADD
 on partially de
ned inputs� such as ��Hi�Signal�� Hi��
The former outputs �Signal� Hi� while the latter results in �Signal� Signal� for the
�sum�carry� pair� For this input we cannot say anything about the sum� but we know
that the carry must be Hi� In the case of ADD
 the pessimism is due to non�optimal use
of the input� information is consumed piecewise by independent subcomponents� There
is no one bit adder implementation whose outputs are more de
ned than those of ADD�
for partially de
ned values�

� applyTac �safeOpSemAllTac��ReduceADD�	��

����� Level � �����

��������������������

�� ����Hi�Signal��Hi�� ��Signal�Hi��Hi�� ��Lo�Signal��Lo��

��Hi�Hi��Signal�	� env �� ADD�
�Var �� ��

���Signal�Hi�� �Signal�Hi�� �Signal�Lo�� �Signal�Hi�	�ADD�
�Var ����

We will now de
ne a N bit adder generating function which is parametrised on the
full adder subcomponent�

�� onebitadder� ��x�y��c� �� �s�c� ��

�� nadd� ���xN�������x�����yN�������y�����c�� �� ��sN�������s����c� ��

fun nadd onebitadder �S �� x � onebitadder x �

nadd onebitadder �S �S n�� x �

LET x IN �� ���xN�������x�����yN�������y�����c�� ��

LET nadd onebitadder �S n�

���Var ���
	�
	��	� �Var ���
	��	��	�� �Var ����	� IN

LET onebitadder ���Var 
��
	�
	�
	� �Var 
��
	��	�
	��

�Var ����	� IN

���Var ���
	� �Var 
��
	�� �� sum ��

�Var ����	� �� carry ���

nadd is a partial function� there is no such a thing as a zero bit adder� A one bit
adder with input ��x�� y��� c�� uses the full adder component� A N � � bit adder with
input ���xN � x�� �yN � y��� c�� uses an N bit adder with input ��x� y�� c�� connected to a full
adder with input ��xN � yN�� cN�� As with the ADD
 circuit� virtually all of the complexity
is due to the composition of intermediate wires� It is more complicated than in the
�paper version� of picoella due to the de Bruijn encoding of variables� The derived rule
ReduceNADD
 just unfolds the nadd de
nition to evaluate the full adder� Note that the
result circuit must be identical to the circuit we evaluate� This means that the adder is
not allowed to have any state�

�� �env �� add circ �� �out �add circ� � � t �

��������������������

�� �env �� nadd add 
 circ �� �out �nadd add 
 circ� � � t �

The derived rule ReduceNADDSSn� dealing with N�� word size� is more involved� Premise
one evaluates the input circuit� premise two the N � � bit adder� and premise three the
full adder� The remaining premises deal with the static semantics� We see that the
output of the N � � bit adder is a tuple CoTuple �o� �� Cons �n��m���� Comparing
this to the de
nition of nadd we see that o� � represents the partial sum �sN � ���� s����

��



and Cons �n��m�� the carry cN��� Decoding the inputs of the 
nal N � �nd bit adder
add � we see that its input carry �Var ����	 accesses the output carry Cons�n��m��

from the N � � bit adder� as expected� The 
nal result of the N � � bit adder consists
of �i� the concatenation of the sum bit of add �Cons�n��m
�� concatenated with the
partial sum o� �� and �ii� the carry bit Cons�n
�m� of add �

�� E t


�� o
 � t


�� E �Type m��

�� E t
 �

�� o� � � t
 �

��	 �� �CoTuple �o� ��Cons �n��m��� �� o
 �� env ��

add ���Var 
��
	�
	�
	� �Var 
��
	��	�
	�� �Var ����	�

�� �CoTuple �Cons �n��m
��Cons �n
�m���

add ���Var 
��
	�
	�
	� �Var 
��
	��	�
	�� �Var ����	�� �

TyTuple �Type m
�Type m��

��	 �� �o
 �� env ��

nadd add �S n� ����Var ���
	�
	��	� �Var ���
	��	��	�� �Var ����	��

�� �CoTuple �o� ��Cons �n��m����

nadd add �S n� ����Var ���
	�
	��	� �Var ���
	��	��	�� �Var ����	��� �

TyTuple �t
 ��Type m���

�
	 �� �env �� circ �� �o
 �circ� � � t
 �

��������������������

�� �env �� nadd add �S �S n�� circ ��

�CoTuple �CoTuple �Cons �n��m
��o� ���Cons �n
�m���

nadd add �S �S n�� circ� � � TyTuple �TyTuple �Type m
�t
 ���Type m��

A four bit adder has been simulated� with ADD� as the subcomponent� For example�
binary ����� ����� � � ������ that is� a sum of ���� and a high carry�

� applyTac �safeOpSemAllTac��ReduceNADD�bit�	��

����� Level � �����

��������������������

�� �����Hi��Lo��Hi�Lo���� �Hi��Hi��Lo�Hi����� Hi�	� env ��

nadd �fn e �� ADD�
�e�� � �Var ��

�� ����Hi��Lo��Lo�Lo���� Hi�	� nadd �fn e �� ADD�
�e�� � �Var ����

Note that ADD� is a meta�level syntactic function� and must therefore be converted into
an object level function� using �fn e �� ADD�
�e���

In this section we see most clearly the increased power of our methodology over sym�
bolic simulation as it has been used by Bryant �BS
�� for example� When we remarked
that mossym does not allow abstraction over circuits what we intended to convey was
that it does not allow the simulation of an N bit adder� Our approach allows more than
this� we can even simulate an N bit adder built using any one bit adder onebitadder�
As long as we know that the subcircuit onebitadder behaves like a one bit adder� we
can simulate any circuit in which it is used� We can simulate a circuit containing ab�
stract hardware� as long as we know what the behaviour of the subcomponent is� Let
us consider an ALU� containing an N bit adder� The N bit adder speci
cation will usu�

��



ally be stated at a higher level of abstraction� using natural numbers� The speci
cation
for the sum could be bitsof �natof x � natof y� mod �N � natof is a data abstraction
function� and bitsof its inverse� When we simulate the ALU� and arrive at the N bit
adder subcomponent� it makes sense to use the speci
cation rather than the implement�
ation� �This assumes we have shown that the implementation speci
es the speci
cation��
Rather than simulating the basic gates the adder is composed of� we compute the natural
number expressions stating the values sum and carry have� This is not only faster� also
conceptually clearer�

��� Two Parity Checkers

Boulton et al� illustrate their approach to the veri
cation of ella designs with a parity
checker �BGHvT
��� It consists of two multiplexors� two delays and a NOT gate�

s�delay
h

HHHH

��
��

inner

mux

outer

mux

delay s�

�

�

�

�

�

�

�

�

�

�

Hi

Hi

in
Cons�n���

Cons�n����

o� �

o�

out

Figure �� The PCHECK� Parity Checker�

PCHECK� describes the same circuit as PARITY IMP in the cited paper� The annotations
Cons�n
�
�� Cons�n
�
�� o
 and o
 
 correspond to terms in the ReducePCHECK� rule�
discussed below� s
 and s� represent the state of the delays�

val NOT g
�e� � IF e MATCHES Hi THEN Lo ELSE Hi�

val MUX
�e�b
�b�� � IF e MATCHES Hi THEN b
 ELSE b��

val REG
�c�e� � DELAY �c�e��

val PCHECK�
�s
�s��e� � LET e IN

LET INIT Signal REC

�� Use a LET to avoid duplicating register ��

LET REG
 �s
�Var �� IN

MUX
 �REG
 �s�� Hi��

MUX
 �Var �� NOT g
�Var ��� Var ���

Hi� IN

Var ��

We use NOT g because NOT is the truth value not operator in Lambda� It is worth noting
that the state of the parity checker is explicit in the abbreviation� The reason for this is
so that the abbreviation may be used in all possible states� and not just the initial state�

��



��	 �� ceq Signal �Cons �n
�
�� �� false

�� Cons �n
�
� �� �case match Hi �Cons �b�
�� of �� Outer MUX ��

uu �� bottom o
 � tt �� o
 � ff �� Hi�

�� o
 �� �case match Hi �Cons �n�
�� of �� Inner MUX ��

uu �� bottom o
 
 � tt �� o
 
 � ff �� Cons �a�
��

�� o
 
 �� �case match Hi �Cons �a�
�� of �� NOT ��

uu �� bottom Lo � tt �� Lo � ff �� Hi�

�� �env �� circ �� �Cons �n�
��h� � Type 
�

��������������������

�� �env �� PCHECK�
�Cons �a�
��Cons �b�
��circ � ��

�Cons �n
�
��PCHECK�
�Cons �n
�
��Hi�h�� � Type 
�

The derived rule ReducePCHECK� contains some points of interest� First note that only
the two multiplexors and the NOT gate are present as subgoals� both delays have disap�
peared� As described in �BGHvT
��� the r�ole of the innermost register is to output Lo at
time zero� and Hi ever after� This is evident from the conclusion of the rule below� where
the state s� is always Hi after an evaluation� Also note that the output Cons�n
�
� is
duplicated in the 
rst register� so that it can be used in the next time step� using the
feedback� At time zero� the values in the registers are both Lo� In fact� the value in the

rst delay at time zero is irrelevant�

� applyTacAll �doRule ReduceDummyVar thenT typeOfChoosersTac thenT

typeOfConstTac thenT ReduceTypeTac��

����� Level � �����

��������������������

�� ��Cons �y�
�	� env �� PCHECK�
�Cons �x�
��Lo�Var �� ��

��Hi	�PCHECK�
�Hi�Hi�Var ����

The rule ReduceDummyVar removes subgoals which compute the value of variables which
do not contribute to the output of the circuit� This derivation uses an arbitrary input
Cons�y�
� and state in the 
rst delay Cons�x�
�� The only constraint on these don�t

care values is that they must have the right type� Note that their possible value includes
the unde
ned or don�t know value� This simulation shows that the state of the new cir�
cuit is fully de
ned no matter what the input at time zero is� In other words� the value
of the input at time zero is ignored� This parity checker outputs Hi at time t if there
have been an even number of His in the input stream from time one to time t inclusive�

An alternative parity checker is listed below�

val PCHECK

�s�e� � LET e IN

LET INIT Signal REC

REG
 �s� XOR
 �Var �� Var 
�� IN

Var ��

The initial state must be Hi� PCHECK
 outputs Hi at time t � � if there have been an
even number of His in the input stream from time zero to time t� The output at time
zero is Hi�

�




� applyTac �safeOpSemAllTac��ReducePCHECK
	��

����� Level � �����

��������������������

�� ��Hi�Lo�Hi�Hi�Lo�Lo	� env �� PCHECK

�Hi�Var �� ��

��Hi�Lo�Lo�Hi�Lo�Lo	�PCHECK

�Lo�Var ����

Ignoring the output at time zero� this output is the complement of that of PCHECK��

� applyTac �safeOpSemAllTac��ReducePCHECK�	��

����� Level � �����

��������������������

�� ��Hi�Lo�Hi�Hi�Lo�Lo	� env �� PCHECK�
�Lo�Lo�Var �� ��

��Hi�Hi�Lo�Hi�Hi�Hi	�PCHECK�
�Hi�Hi�Var ����

Using conventional veri
cation techniques we proved that the PCHECK
 circuit does indeed
count the number of His in the input stream�

�� Number of v�s in the input stream from time � up to time t� ��

fun noof v input � � � �

noof v input �S t� � if input t � v then �noof v input t� � 


else �noof v input t��

fun even n � n mod � � ��

fun absinv true � Hi � absinv false � Lo�

fun state x y � absinv �even �noof Hi x y���

noof counts the number of vs in the input stream� even returns true if there have been
an even number of them� and absinv is the inverse data abstraction function� mapping
booleans to constants� state combines these three functions into one� to make the result
more readable�

�� forall t�l�e�input� input t �� Hi n� input t �� Lo ���

Reduce l �PCHECK

�state input t�e t�� ��

�state input t� PCHECK

�state input �S t��e �S t���

In other words� assuming the input is either Hi or Lo at every time step� the output at
time t consists of two parts� The 
rst value is Hi is there have been an even number
of His in the input stream� The second part states that the state of the new circuit is
given by the state function at time t � �� As we discussed at the end of the previous
subsection� we can use this speci
cation instead of using the circuit in simulations�

Although it was not shown in the last two examples� the semantics computes the
least 
xed point of a LET REC� An iterative method is used� and the number of iterations
may vary to reach the 
xed point� In the case of delayed feedbacks� however� it takes
at most one iteration� If the output is not unde
ned exactly one iteration is needed� In
the derived rules for PCHECK
 and PCHECK� the assumption was made that no unde
ned
values were input to the circuit� �Premise ��	 of rule ReducePCHECK� states this� The
assumption is more explicit in the theorem above�� It follows from this assumption that
only de
ned values are output and hence only one iteration is needed� Tactics do not
attempt to deal with recursion at the moment� For simple cases such as the parity
checkers� the derived rules ReduceIterateN� where N ranges from � to � are very useful�

��



� Conclusions

Simulation and veri
cation are usually described as complementary� incompatible ap�
proaches� This paper shows that by suitably embedding the operational semantics of
a hdl in an appropriate proof tool we are able to integrate simulation and veri
cation
within the same framework� We believe the approach taken here is applicable to any
hdl� The choice of picoella and Lambda is not crucial to the discussion�

The strength of our approach is the ability to specify� implement� simulate and reason
about a circuit within a single framework� At any stage in this process we may use a
conventional hdl notation� the logic supported by the proof system� or a mix of the two�
Although the speci
cation will often be expressed using logic� an algorithmic speci
ca�
tion� i�e� as a high level hdl program� may be useful� An algorithmic speci
cation can
also be used to give a more operational intuition by executing it� Logic speci
cations
�and implementations� cannot be animated easily� although Camilleri has done some
work towards this �Cam
��� The common relational hardware description style� which
uses existential quanti
cation for hidden wires� is an example� Moreover� structure and
behaviour are not properly separated� the form of the behavioural description is used to
indicate the intended structure of the circuit� Our approach strictly separates structure
and behaviour �Goo�� Behaviour is given to a purely structural term through a formal
embedded semantics� and properties of circuits are derived using this semantics� The
ability to reason about and manipulate structural expressions per se is very useful� It
facilitates interfacing with conventional design tools because they use the same notation�
For example� circuits designed using a proof system may be exported directly to lay�
out generators� Alternatively� hardware output by unveri
ed hardware synthesis tools
can be validated using the proof system� Hardware may also be synthesised formally
using hardware generators such as nadd in section 	��� 
rst introduced by Brock and
Hunt in �BH�
�� Formal synthesis �HLD�
�� and re
nement based approaches �FM�
�

t well into this framework� Dialog is a graphical synthesis package integrated with
the Lambda proof system �Fra
��� Using Dialog� it would be possible to synthesise
formally veri
ed hdl descriptions without the need to explicitly use the underlying proof
system� This could be seen as a hdl interface to the proof system� the user does not need
to interact with the underlying proof system� We can also treat circuit optimisations
formally� If two structural terms have equivalent behaviours� they may be substituted
for one another in any context� A given circuit could be optimised by �possibly context
dependent� rewriting� which is certainly possible in Lambda� Finally� we can use the
embedded semantics to simulate the structural terms� Both data and circuit descriptions
may be meta�variables� enabling powerful symbolic simulation� Partial implementations
may be simulated by using the speci
cations of the missing components� In our opinion
the main advantage of this approach is the possibility of using a conventional hdl in
more formal setting� This bridges the gap between hardware designers and veri
cation
engineers� The availability of a powerful simulator in the proof system is paramount�

Future work includes the optimisation of tactics� Tactics must be made to deal with
recursion automatically if possible� It will also be helpful to make the use of the system
more user�friendly by providing a menu�based X window interface using Lambda�s built�
in browser� Finally� picoella was designed to exhibit the ideas outlined here and in
�Goo�� A larger� more readable� subset of ella must be used for practical applications�

��



A Derived Operational Semantics Rules

In this section all derived operational semantics rules of the operational semantics em�
bedding �including the LET REC� are listed� The rules have been pretty printed using a
number of specially de
ned functions� As in the rest of the paper� all expressions have
been manually converted from a pre
x notation� e�g� Let �e�f�� to an in
x notation LET

e IN f� To code this in Lambda as part of the pretty printing functions would require
a considerable e�ort� The resultant output re�ects accurately its de
nition outside the
proof system �Goo
���

This rule terminates the simulation� when there are no more input values to be
processed�

����� ReduceSeqNil �����

��������������������

�� ��	� env �� circ �� ��	�circ ��

The ReduceSeqCons rule advances time� and takes the 
rst value of the input stream
and pushes it onto the environment�

����� ReduceSeqCons �����

�� �instream � env �� circ
 �� �outstream �circ� ��

�� �i
 �� env �� circ �� �o
 �circ
 �� t �

��������������������

�� �i
 �� instream � env �� circ �� �o
 �� outstream �circ� ��

The following rule starts the computation of the 
xed point of the LET REC� The third
premise states that the initial approximation must be equal to the bottom value� The
type of the initial approximation must be equal to the type of the de
ning expression�

����� ReduceLetRec �����

�� E t


�� o
 � t


�� initial � t


�� bottom initial �� initial

�� �o
 �� env �� circ� �� �o� �circ�� �� t� �

�� �initial � env �� circ
 �� �o
 �circ
� �� t
 �

��������������������

�� �env �� LET INIT initial REC circ
 IN circ� ��

�o� �LET INIT initial REC circ
 � IN circ� ��� t� �

This rule detects a 
xed point�

����� ReduceFix �����

�� �initial �� env �� circ
 �� �initial �circ
� �� t
 �

��������������������

�� �initial � env �� circ
 �� �initial �circ
� �� t
 �

The third premise of this rule determines that we have not reached a 
xed point� It
therefore iterates again� this time with the new approximation o
 � in premise ��

��



����� ReduceIterate �����

�� ceq initial o
 �� false

�� �o
 � env �� circ
 �� �o� �circ�� �� t
 �

�� �initial �� env �� circ
 �� �o
 �circ
� �� t
 �

��������������������

�� �initial � env �� circ
 �� �o� �circ�� �� t
 �

The rule for the non�recursive LET is much simpler� we can just push the result of the
de
ning expression onto the stack�

����� ReduceLet �����

�� E t


�� o
 � t


�� �o
 �� env �� circ� �� �o� �circ�� �� t� �

�� �env �� circ
 �� �o
 �circ
� �� t
 �

��������������������

�� �env �� LET circ
 IN circ� �� �o� �LET circ
� IN circ�� �� t� �

The following two rules deal with the lookup of variables� as encoded by the de Bruijn
encoding�

����� ReduceVarSn �����

�� �env �� Var n �� �o� �Var n�� t� �

��������������������

�� �o
 �� env �� Var �S n� �� �o� �Var �S n��� t� �

����� ReduceVar� �����

�� out � t

��������������������

�� �out �� env �� Var � �� �out �Var ��� t �

The output from a delay is its state� its new state is the output from the expression
circ � The type of the state must be same as the type of the input expression�

����� ReduceDelay �����

�� initial � t

�� �env �� circ �� �out �circ� �� t �

��������������������

�� �env �� DELAY �initial �circ � �� �initial �DELAY �out �circ� ��� t �

����� ReduceTuple �����

�� �env �� circ� �� �o� �circ�� �� t� �

�� �env �� circ
 �� �o
 �circ
� �� t
 �

��������������������

�� �env �� �circ
 �circ� � ��

�CoTuple �o
 �o� ���circ
� �circ�� ��� TyTuple �t
 �t� ��

The derivation of the semantic rules for the IF statement use the fact that the semantics
is total� At the time this work was carried out �July �

�� this result had not been proved
for the embedding which included the LET REC� As a result the rules in this embedding
were more complicated than the rules in the embedding without the LET REC� for which

��



the totality result had been proved� The totality result discharges the subgoal �� out �

t in ReduceIf and ReduceIf� below�

����� ReduceIf �����

�� E t

�� out � t

�� chooser � t

�� �env �� branch� �� �o� �branch�� �� t
 �

�� �env �� branch
 �� �o
 �branch
� �� t
 �

�� �env �� circ �� �out �circ� �� t �

��������������������

�� �env �� IF circ MATCHES chooser THEN branch
 ELSE branch� ��

�case match chooser out of uu �� bottom o
 � tt �� o
 � ff �� o� �

IF circ � MATCHES chooser THEN branch
 � ELSE branch� ��� t
 �

Note in ReduceIf that the types of the two branches must be equal� and that the type
of the chooser must match that of the selecting expression� ReduceIf returns a symbolic
answer� but most of the time we want a concrete value� ReduceIf� therefore explicitly
computes the output value o� �

����� ReduceIf� �����

�� E t

�� out � t

�� o� �� �case match chooser out of

uu �� bottom o
 � tt �� o
 � ff �� o� �

�� chooser � t

�� �env �� branch� �� �o� �branch�� �� t
 �

�� �env �� branch
 �� �o
 �branch
� �� t
 �

�� �env �� circ �� �out �circ� �� t �

��������������������

�� �env �� IF circ MATCHES chooser THEN branch
 ELSE branch� ��

�o� �IF circ � MATCHES chooser THEN branch
 � ELSE branch� ��� t
 �

ReduceIfTt� ReduceIfTt� ReduceIfUu have not been listed� They corresponds to the
three possible outputs the IF statement can deliver� and each include an premise to show
that it is the THEN� ELSE or unde
ned branch which is taken�

There is a rule for each of the indexing operators�

����� ReduceIndex
 �����

�� E t�

�� �env �� circ �� �CoTuple �o
 �o� ��circ� �� TyTuple �t
 �t� ��

��������������������

�� �env �� circ �
	 �� �o
 �circ� �
	�� t
 �

����� ReduceIndex� �����

�� E t


�� �env �� circ �� �CoTuple �o
 �o� ��circ� �� TyTuple �t
 �t� ��

��������������������

�� �env �� circ ��	 �� �o� �circ� ��	�� t� �

The remainder of the rules deal with the static semantics proof obligations� which may

�	



arise from the previous rules�

����� ReduceCons �����

��������������������

�� Cons �n�m�� Type m

����� ReduceCoTuple �����

�� d� t�

�� c� t


��������������������

�� CoTuple �c�d�� TyTuple �t
 �t� �

The following three rules deal with typing of choosers�

����� ReduceT �����

�� ch� � t�

�� ch
 � t


��������������������

�� T �ch
 �ch� �� TyTuple �t
 �t� �

����� ReduceB �����

�� ch� � t

�� ch
 � t

��������������������

�� B �ch
 �ch� �� t

����� ReduceC �����

�� c� t

��������������������

�� C c� t

The remaining rules deal with existence conditions which may arise�

����� ReduceTyTuple �����

�� E t�

�� E t


��������������������

�� E �TyTuple �t
 �t� ��

����� ReduceType �����

�� E n

��������������������

�� E �Type n�

����� ReduceSn �����

�� E n

��������������������

�� E �S n�

��



����� Reduce� �����

��������������������

�� E �

References

�BGHvT
�� Richard Boulton� Mike Gordon� John Herbert� and John van Tassel� The
HOL veri
cation of ELLA designs� Technical Report �

� University of
Cambridge Computer Laboratory� August �

��

�BGL�
�� H Barringer� G Gough� T Longshaw� B Monahan� M Peim� and A Williams�
Semantics and veri
cation for boolean kernel ELLA using IO automata�
In P Prinetto and P Camurati� editors� Advanced Research Workshop on

Correct Hardware Design Methodologies� pages �� 
�� ESPRIT CHARME�
North Holland� June �

��

�BGM
�� Howard Barringer� Graham Gough� and Brian Monahan� Operational se�
mantics for hardware design languages� In P Prinetto and P Camurati�
editors� Advanced Research Workshop on Correct Hardware Design Meth�

odologies� pages ��� ��	� ESPRIT CHARME� North Holland� June �

��

�BH�
� Bishop C Brock and Warren A Hunt� Jr� The formalization of a simple
hardware description language� In Luc Claesen� editor� Applied Formal

Methods For Correct VLSI Design� pages ��� �
�� Amsterdam� November
�
�
� IMEC�IFIP International Workshop� Elsevier Science Publishers�

�BHY
�� Bishop C Brock� Warren A Hunt� Jr� and William D Young� Introduction to
a formally de
ned hardware description language� In V Stavridou� T F Mel�
ham� and R T Boute� editors� Theorem Provers in Circuit Design� Theory�

Practice and Experience� pages � ��� IFIP TC���WG ����� North Holland�
June �

��

�BS
�� Randal E Bryant and Carl�John Seger� Formal veri
cation of digital circuits
using symbolic ternary system models� Technical Report CMU�CS�
������
School of Computer Science� Carnegie Mellon University� Pittsburgh PA
������ May �

��

�Cam
�� Albert John Camilleri� Simulating hardware speci
cations within a theorem�
proving framework� International Journal of Computer Aided Design�
����� ���� �

��

�Com
�� Computer General Electronic Design� The New Church� Henry St� Bath
BA� �JR� England� The ELLA Language Reference Manual� issue 	��� �

��

�dB��� N D de Bruijn� Lambda�calculus notation with nameless dummies� a tool
for automatic formula manipulation� Indag Math�� �	���� �
�� �
���

�FF
�� Simon Finn and Michael P Fourman� Logic Manual for the Lambda System�
Abstract Hardware Limited� version ���� May �

��

��



�FFM
�� Mick Francis� Simon Finn� and Ellie Mayger� Reference Manual for the

Lambda System� Abstract Hardware Limited� version ���� November �

��

�FM�
� Michael P Fourman and Eleanor M Mayger� Formally based system design
 interactive hardware scheduling� In G Musgrave and U Lauther� editors�
International Conference on VLSI� Munich� �
�
�

�Fra
�� Mick Francis� DIALOG Reference Manual� Abstract Hardware Limited�
version ���� December �

��

�Goo� K G W Goossens� Embedding hardware design and description languages
in proof systems� Forthcoming PhD thesis� University of Edinburgh�

�Goo
�� K G W Goossens� Semantics for picoELLA� Manuscript� June �

��

�Goo
�� K G W Goossens� Embedding a CHDDL in a proof system� In P Prinetto
and P Camurati� editors� Advanced Research Workshop on Correct Hard�

ware Design Methodologies� pages ��
 ��	� ESPRIT CHARME� North Hol�
land� June �

�� Also as LFCS Report ECS�LFCS�
������

�Gor��� Michael J C Gordon� HOL� A proof generating system for higher�order logic�
In Graham Birtwistle and P A Subrahmanyam� editors� VLSI Speci�cation�
Veri�cation and Synthesis� pages �� ���� Boston� �
��� Kluwer Academic
Publishers�

�Hay��� John P Hayes� Digital simulation with multiple logic values� IEEE Trans�

actions on Computer�Aided Design� CAD��������	 ���� April �
���

�Hil
�� M G Hill� The dynamic semantics of kernel ELLA� Memorandum 	����
Royal Signals and Radar Establishment� March �

��

�HLD�
� F K Hanna� M Longley� and N Daeche� Formal synthesis of digital sys�
tems� In Luc Claesen� editor� Applied Formal Methods For Correct VLSI

Design� pages ��� �	�� Amsterdam� November �
�
� IMEC�IFIP Interna�
tional Workshop� Elsevier Science Publishers�

�HMT�
� Robert Harper� Robin Milner� and Mads Tofte� The de
nition of standard
ML version �� LFCS Report Series ECS�LFCS��
���� LFCS� Department of
Computer Science� University of Edinburgh� May �
�
�

�Ins��� The Institute of Electrical and Electronics Engineers� Inc�� �	� East 	�th
Street� New York� NY����� USA� IEEE Standard VHDL Language Refer�

ence Manual� IEEE std ������
��� �
���

�Mel��� Thomas F Melham� Using recursive types to reason about hardware in
higher order logic� Technical Report ���� University of Cambridge Computer
Laboratory� May �
���

�Met��� Meta�software Inc� HSPICE Users� Manual H���	� January �
���

�Plo��� Gordon Plotkin� A structural approach to operational semantics� Technical
Report FN��
� Computer Science Department� Aarhus University �DAIMI��
�
���

��



�SB
�� Ashraf Salem and Dominique Borrione� Formal semantics of VDHL timing
constructs� In Euro�VHDL Stockholm� September �

��

�SGEA
�� V Stavridou� J A Goguen� S M Elker� and S N Aloneftis� FUNNEL� A CHDL
with formal semantics� In P Prinetto and P Camurati� editors� Advanced
Research Workshop on Correct Hardware Design Methodologies� pages ��� 
���� ESPRIT CHARME� North Holland� June �

��

�vT
�� John P van Tassel� A formalisation of the VHDL simulation cycle� Technical
Report �	
� University of Cambridge Computer Laboratory� March �

��

�WMS
�� Philip A Wilsey� Timothy J McBrayer� and David Sims� Towards a formal
model of VLSI systems compatible with VHDL� In A Halaas and P B
Denyer� editors� VLSI �
	� pages �a���� �a������ Edinburgh� Scotland� Au�
gust �

�� IFIP TC ���WG �����

��


