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Abstract

This paper describes the development of progressively more powerful and abstract
hardware simulators. A small computer hardware design and description language pico-
ella is then introduced, followed by its formal semantics. Using a number of small
examples, we will then show the how this formal semantics may be used within a proof
system as a sophisticated simulation tool. Examples include some full adders, a general
N bit adder, and two parity checkers.
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1 Introduction

This introduction describes the development of various kinds of hardware simulators.
Following this, a small hdl called picoella, is introduced in section 2. Its formal seman-
tics, and a brief account of this semantics’ embedding in a proof system are described
in section 3. Section 4 illustrates the use of the semantics in the capacity of a symbolic
simulator, as described in the remainder of this introduction. Finally, integration with
other design and verification methodologies will be discussed.

Modern hardware designs are complex. Conventional methods take many iterations to
arrive at an acceptable implementation. Though exhaustive testing might allow designers
to achieve a high degree of confidence in small circuits, exhaustive testing of modern
designs is impossible both on time complexity and cost grounds.

Breadboarding is the process of constructing the design and then using this prototype
to perform tests. This is only feasible for small circuits. With greater integration and
density of components this method becomes prohibitively expensive. The first move away
from using real hardware to test a design is to simulate the circuit. Greater complexity
encourages the use of structured circuit descriptions, leading to hardware description



languages such as ella
1 [6] and vhdl [13]. It is possible to design simulators for such

languages which model the behaviour of a circuit described in the language.
One of the problems with both breadboarding and value simulation is that for any

substantial circuit the number of possible inputs (or test vectors) becomes very large.
Circuits with internal state are even harder to verify in this manner. By introducing
extra values in the value domain, such as don’t know and don’t care, the number of test
vectors may be reduced substantially. If a particular input is irrelevant for a particular
test, its value can be set to don’t care, instead of having to simulate the test twice, with
the value set to true and false respectively.

The mossym simulator [5] is not limited to fixed values as input, but also allows
symbolic variables and boolean formulae. That is, we may set an input to the symbolic
variable x, say. Wherever x appears we cannot assume anything about its value, so that
the result of the operation may be a formula. Note that x is not an extra value in the
value domain, but ranges over all these values. Of course, this puts an extra burden on
the simulator which now needs to be able to handle arbitrary formulae instead of simple
values. It may also require algebraic capabilities to simplify intermediate formulae. In
theory, we need to do only one simulation; the one with all the input values set to variables.
The result would be an expression which would describe the circuit’s behaviour. However,
this expression may be as complex as the circuit description.

In mossym we have an asymmetry: we are permitted abstraction over data but not
over circuits. In other words, we may have symbolic variables ranging over data values, but
we are not allowed circuits containing symbolic variables. Symbolic variables are abstract
hardware. This idea is not as strange as it may seem; plug-in components are in effect
abstract hardware, certainly as long as the circuit is under development. Why would it
be useful to have this capability? It would seem that, since we are dealing with the design
of a certain circuit, we would only want to simulate that circuit. Consider, however, that
large circuits are designed in a modular fashion to allow a number of people to work on
separate parts of a circuit at the same time. When a subcomponent is ready, it has to be
simulated in a larger context, all of which may not be completed. The availability of an
abstract implementation for unfinished parts of the design would enable the component
to be simulated in its correct context. A suitable simulator would allow the evaluation of
a circuit containing a mixture of concrete and abstract components. Of course, certain
properties of the abstract components may be needed to arrive at an output, but these
should be available from their specifications. We use the specification of the abstract
components to simulate them as long they are not available. Modifying a conventional
simulator to deal with these extensions would completely transform it. Mathematical
proof systems, in contrast, already have the capability to deal with abstract values of any
sort. (This assumes that we work within a suitably powerful logic, such as higher order
logic.) If we use a hdl to describe circuits and as input to the simulator, the hdl needs
to have a precise mathematical definition to be used in conjunction with a proof system.
The approach we advocate here uses a formal definition of the behaviour of a hdl and
uses it within a proof system to provide simulation capabilities.

1
ella is a trademark of the Secretary of State for Defence, United Kingdom.



2 picoELLA

picoella is derived from ella [6]. It contains the ‘active ingredients’ but lacks its
syntactic sugar. picoella contains the following constructs:

Type definitions; these are either enumerated types, such as TYPE Signal = Hi |

Lo, or tuple types such as TYPE twobool = bool * bool.
Local declarations. LET x = e IN e’ defines a local name x for a wire (or signal),

which may be used in e’. Circuit descriptions may be structured using these declarations.
Multiple use of a name such as x corresponds to a fan-out of the signal. Recursive
declarations allow the description of feedback, an example of which is shown at the end
of this section.

Constants are built up using constructors such as Hi, or ?type representing the un-
defined, or don’t know value of type type, or tuples of constants.

Tuples and indexing are straightforward. (e1,e2)[i] behaves the same as ei, for
example. Although, strictly speaking, indexing is not needed it facilitates decomposition
of circuit descriptions, as we shall see in the examples.

The IF statement, or multiplexor, has the form IF e MATCHES chooser THEN e1

ELSE e2. A chooser is a pattern against which the output of circuit e is matched. If it
matches, the output of the first branch is the result of the IF. If the output of e and the
chooser do not match the ELSE part is chosen. A third possibility is that the output of e
is insufficiently defined to decide between the two branches. In this case, the undefined
value ?type (of the correct type) is the result. For example, consider the NOT gate IF

?Signal MATCHES Hi THEN Lo ELSE Hi. If the undefined, or don’t know signal ?Signal
turned out to be Hi then the output would be Lo. On the other hand, if it were Lo, the
output would be Hi. The undefined output ?Signal therefore reflects our intuition that
we don’t know what the output should be.

The delay construct introduces a discrete and linear time base into the language,
which may be modelled using the natural numbers. The output from circuit e at time
t will be output by Delay(ct,e) at the next time step t + 1. At the current time t, the
value ct is the result. This shows that the state of the delay is explicit in its description.
This contrasts with other languages, where it resides in a memory or store. picoella
dispenses with this, and can use a simpler environment instead, as we shall see later.
However, as a result of the explicit representation of the state, a new circuit description
must be evaluated at each time step. The result of an evaluation consists therefore of a
value output together with a description of the circuit at the next time step. The type of
the dynamic semantics is therefore environment → expression → (value × expression).

As an example, consider the following circuit which implements a parity checker. It
returns Hi at time t + 1 if there have been an even number of Hi’s on the input signal
input during the closed time interval [0, t]. At time zero it outputs Hi.

LET INIT ?Signal

REC xor = DELAY (Hi, IF (input,xor) MATCHES (Hi,Lo)|(Lo,Hi)

THEN Hi ELSE Lo)

IN xor

We will return to this example in section 4.3.



3 A picoELLA Semantics and Its Embedding in Higher

Order Logic

Few hdls have a precise definition. In practice the simulator serves as this definition,
but this leads to problems when different implementations present conflicting outputs.
A formal semantics may be used to give a mathematical description of the behaviour
of a hdl, i.e. how a simulator should behave.2 For example, a structural operational
semantics [15] defines the behaviour of a construct in terms of its subexpressions. General
properties, such as termination of any simulation within a finite number of steps, may be
proved about the semantics (and hence the behaviour of conforming simulators). Various
subsets of ella [10, 1], Funnel [16] and vhdl subsets [18, 17] are some of the languages
that have been given formal definitions.

Although a formal semantics is very useful as a mathematical reference manual, one
can also use formal semantics as the basis for design tools. By embedding the semantics
in a logical system, supported by a proof assistant such as Lambda

3 [8] it is possible to
provide support for the formal development of circuit design [11].

The semantics for picoella [10] takes the form of a structural operational semantics.
It comprises a static semantics describing which programs are well-typed, and a dynamic

semantics defining the run-time behaviour of well-typed programs. We will not discuss
the static semantics here; it suffices to say that it is relatively straightforward. picoella
semantics rules fall into two categories; those dealing with time, and those dealing with
the evaluation of expressions within one time step. The ReduceSeqCons rule falls into
the first class:

Γ′ ⊢ exprt ⇒ ot, exprt+1 tl, Γ ⊢ exprt+1 ⇒ tl′, exprt+N

it :: tl, Γ ⊢ exprt ⇒ ot :: tl′, exprt+N

Here exprt is the program at time t, Γ the environment in which the program runs,
and it :: tl the input stream. Γ′ is Γ with input value it adjoined (this will be made
more precise later). This rule shows that at time t we run the program exprt with input
value it in environment Γ′. The output value ot is added to the output stream, and the
new program exprt+1 is evaluated with the remainder of the input stream. As explained
previously, since the state of the circuit is explicit in its description we need to evaluate
a new circuit at every time step. A typical member of the second category of rules is the
ReduceTuple rule:

Γ ⊢ expr1 ⇒ v1, expr′1 Γ ⊢ expr2 ⇒ v2, expr′2
Γ ⊢ (expr1, expr2) ⇒ (v1, v2), (expr′1, expr′2)

To evaluate a tuple in environment Γ, both subexpressions must be evaluated in the same
environment. The rule for the delay shows the use of the embedded state:

Γ ⊢ expr ⇒ v, expr′

Γ ⊢ DELAY (c, expr) ⇒ c, DELAY (v, expr′)

2Note that the implementation of the simulator may use any model, as long the input–output relation
obeys the definition. The semantic definition should be clear and simple, not necessarily efficient.

3
Lambda and Dialog are products of Abstract Hardware Limited.



The output from the delay is its latched value c. The new description of the delay, to
be evaluated at the next time step, contains the output v from expr at the current time
step. In other words, it has latched this clock cycle’s output.

The semantics described above, has been embedded in the Lambda proof system.
The Lambda proof system implements a polymorphic constructive higher order logic
of partial terms.4 An existence predicate E is provided to reason about partial terms.
Equality == compares two denoting objects, weak equality (or equivalence) === is true
if either both objects do not denote, or if both denote and are equal. The functional
language ml is used as a command language. A large subset of ml is also used to define
new data types and operations on data types within the logic. The soundness of the
system cannot be compromised through new definitions. Lambda returns a number of
rules characterising the new ml data type definitions, such as existence of constructors,
(in)equality rules and a structural induction principle. In the case of functions rules
include a rewrite rule for every function clause. These new rules may be used to define
derived rules and tactics. Tacticals can be used to combine tactics into rewrite strategies,
or symbolic simulation commands. Examples are OpSemTac and safeOpSemAllTac in
section 4.1.

A type const has been encoded using the ml definition system, representing picoella
constants:

datatype const = Cons of natural * natural | CoTuple of const * const;

Cons(i,t) encodes the ith constructor of type t. Cons(0,t) represents ?t which is the
undefined, or don’t know, value of type t. A constant is therefore a constructor or bottom
value, or a tuple containing constants. To illustrate structural induction we consider the
choosers data type used to encode patterns in the IF statement.

datatype choosers = C of const

| B of choosers * choosers

| T of choosers * choosers;

B(ch,ch’) represents the bar, or disjunctive chooser; it matches with a constant if at
least one of ch and ch’ does. T(ch,ch’) is the tuple, or pairing chooser, matching if
both subchoosers do. C c is the constant chooser. C (Cons (0,type)) represents the
wild card chooser type; it always matches. It is not allowed to match for the bottom
value ?type, as this would permit non-monotone circuit descriptions. Lambda returns
the following choosers structural induction rule for this data type.

[3] E r1, E r, P#(r1), P#(r) |- P#(T (r1,r))

[2] E r3, E r2, P#(r3), P#(r2) |- P#(B (r3,r2))

[1] E r4 |- P#(C r4)

--------------------

E w |- P#(w)

There are three premisses, each containing some hypotheses. E r4 is an existence hy-
pothesis, asserting that r4 denotes. P#(r1) states that the property P holds for r1. To
prove a property P of all choosers w three subgoals must be proved: in case of the second
premise, for example, it must be shown that P holds for B(r3,r2) provided it holds for r3

4Note that we use Lambda version 3.2. The more recent version 4.0 uses a different logic.



and r2, and r3 and r2 denote. The type representing expressions, or circuits is defined
as follows.

datatype expr = Const of const

| Tuple of expr * expr

| Let of expr * expr

| Var of natural

| Delay of const * expr

| If of expr * expr * expr * choosers

| Index1 of expr

| Index2 of expr

| LetRec of const * expr * expr;

Note that no constructor is present for TYPE. Types are dealt with on a meta-level, i.e. us-
ing Lambda’s facilities, rather than at the expr object level. To embed the LET operator
the de Bruijn encoding of lambda abstractions is used. The bound variables of lambda
expressions are encoded as natural numbers indicating the distance (measured in interven-
ing lambdas) away from the defining lambda. Thus λx.λy.(x, (x, y)) a b would be encoded
as λλ(1, (1, 0)) a b. In picoella this corresponds to encoding LET x = a IN LET y = b

IN (x,(x,y)) by Let (a, Let (b, Tuple (Var 1, Tuple (Var 1, Var 0)))). The
de Bruijn encoding was sufficient for our purposes because the environment is used only as
a stack. Work using the hol system has usually represented names by strings; the value
environment has the type string -> const [14, 17]. Finally, the dynamic semantics can
be defined as a function Reduce. Its type is Reduce: const list -> expr -> (const

* expr), where const list represents the value environment.

fun Reduce l (Let (e,e’)) =

let val (c, f) = Reduce l e

val (c’, f’) = Reduce (c::l) e’

in (c’, Let (f,f’))

end |

Reduce l (Var n) = (elem l n, Var n) |

Reduce l (If (e,e’,e’’,ch)) =

let val (c,d) = Reduce l e

val (c’,d’) = Reduce l e’

val (c’’,d’’) = Reduce l e’’

in ( case match ch c of

tt => c’ |

ff => c’’ |

uu => bottom c’, If (d,d’,d’’,ch) )

end | ...;

The LET statement reduces the defining expression, and pushes the value result on the
stack l (i.e. stores it in the environment). Evaluating a name corresponds to a lookup
in the environment Γ in the dynamic semantics, and a lookup in the stack l in the
embedding.

The IF construct evaluates all of its subexpressions. It then returns (tt) the result of
the first branch if we have a definite match; or (ff) if we have a definite no-match, the



result of the second branch; or (uu) a bottom value of the appropriate type if we cannot
decide between the two branches.

We have proved a number of properties of the embedded semantics using Lambda.
For example, the reduction function is monotone, that is, if the input becomes more
defined, the output becomes more defined. Also, the reduction function preserves the
shape of the program (an adder does not become a multiplier after some time!). In other
words, only the contents of delays changes over time. Moreover, we have shown that
even in the presence of delayless feedback loops the reduction function terminates in a
finite number of steps. In fact, the semantics computes the least fixed point solution of
the circuit. It is important to realise that these are results concerning all circuits, not
particular instances. A more detailed account of the embedding may be found in [11, 9].
For the remainder of this paper, with the exception of subsection 4.3 which deals with
feed-back, an embedding without the LET REC has been used. The operational semantics
rules dealing with IF are slightly simpler in the embedding without the LET REC. Other
rules are identical.

Using these definitions, and derived properties, the operational semantics rules de-
scribed at the start of this section may be derived within the proof system.5 These rules
encode both the static and dynamic semantics.

The rule ReduceSeqCons corresponds to ReduceSeqCons previously. Rules shown in
the typewriter font denote the embedded rules, those in roman font the ‘paper’ rules.

|- (instream , env |- circ1 => (outstream ,circ2 ))

|- (i1 :: env |- circ => (o1 ,circ1 ) : t )

--------------------

|- (i1 :: instream , env |- circ => (o1 :: outstream ,circ2 ))

To evaluate a program circ with a non-empty input stream i1 ::instream , the head of
the input stream is pushed onto the environment env . This corresponds Γ′ in the paper
rule. circ is then evaluated within this time step. The remainder of the input stream
is then evaluated using the new circuit circ1 . Finally, the output o1 is prepended to
the resulting output stream. It is a pretty printed version of:

E instream , E env , E circ1 , E t

|- ReduceSeq env circ1 instream == (outstream ,circ2 )

E (i1 :: env ), E circ , E t

|- typeOfExpr (map typeOfConst (i1 :: env )) circ == (t ,true)

/\ Reduce (i1 :: env ) circ == (o1 ,circ1 )

--------------------

E (i1 :: instream ), E env , E circ , E t

|- ReduceSeq env circ (i1 :: instream ) == (o1 :: outstream ,circ2 )

Henceforth we will only show pretty printed output. Unfortunately, no quotation/anti-
quotation system is available, so that any input must still use the raw syntax. The rule
for the multiplexor, ReduceIf’ is similar:

5This is in contrast with work by van Tassel [17], which starts directly with the semantic rules. Using
the hol inductive relation package more general relational semantics may be encoded. In Lambda

version 3.2 we are limited to functional semantics.



[6] |- E t

[5] |- o3 == (case match chooser out of

uu => bottom o1 | tt => o1 | ff => o2 )

[4] |- chooser : t

|- (env |- branch2 => (o2 ,branch2’ ) : t1 )

|- (env |- branch1 => (o1 ,branch1’ ) : t1 )

|- (env |- circ => (out ,circ’ ) : t )

--------------------

|- (env |- IF circ MATCHES chooser THEN branch1 ELSE branch2 =>

(o3 ,IF circ’ MATCHES chooser THEN branch1’ ELSE branch2’ ) : t1 )

There are some extra hypotheses ([4] and [6]) dealing with the static semantics: the
choosers must be well-typed and have (denoting) type t . Note that branch1 and
branch2 must have the same type t1 , which is also the type of whole IF. The out-
put of the IF is computed in premise five. The three cases (match, no match and don’t
know) are represented in the case statement by tt, ff and uu respectively. The IF is
strict; both branches must always be evaluated. Four other rules dealing with the IF are
particular instantiations of this rule, as we shall see later.

It is important to realise that circ , t , etc. are meta-variables. The ReduceIf’ rule
is really a rule schema, which may be instantiated in an infinite number of different ways.
When it is applied to a particular IF statement such as IF Hi MATCHES Hi THEN Lo

ELSE Hi, circ , chooser , branch1 and branch2 will be unified with Hi, Hi, Lo, and
Hi respectively. This unification is reflected in every place where these variables occur
in the rule. The unification works both ways, meta-variables in a rule are unified to the
current goal so that the rule applies (as in the example below). But meta-variables in
the goal may also be unified (specialised, made more concrete) for the rule to apply. We
will see examples of this later on. In Lambda meta-variables may be flexible or rigid.
The former are used to stand for some term to be determined as the proof proceeds, the
latter require proofs to be schematic in the variable. Rigid variables ensure that a general
result, rather than an instantiation of the result, is proved.

4 Examples

In this section we will illustrate the possible uses of an embedded operational semantics.
First we will simulate a simple AND gate in various ways to illustrate the basic principles.
Following this, some one bit adders and a general N bit adder, parametrised on the
word size and one bit adder subcomponent, will be shown. Finally, two parity checker
implementations will be discussed.

4.1 A Simple AND Gate

An AND gate may be described in picoella as

IF e MATCHES (Hi,Hi) THEN Hi ELSE Lo

or, using the syntax of the embedding:



If (e, Const Hi, Const Lo, T (C Hi, C Hi));

Here e is the input to the circuit. Signal, Hi and Lo have been defined as Cons(0,1),
Cons(1,1) and Cons(2,1) respectively. All of Signal, Hi and Lo have type Type 1. We
will simulate an AND gate with (Hi,Lo) as input using the ReduceIfFf and ReduceConst

rules. The rule ReduceIfFf is comparable to the rule ReduceIf’ of the previous page,
but always chooses the ELSE branch.

> apprl ReduceIfFf;

***** Level 2 *****

[6] |- E t

[5] |- match (Hi, Hi) out == ff

[4] |- (Hi, Hi) : t

[3] |- (env |- Lo => (Lo, Lo) : Type 1)

[2] |- (env |- Hi => (o1 , Hi) : Type 1)

[1] |- (env |- (Hi, Lo) => (out , (Hi, Lo)) : t )

--------------------

|- (env |- IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo

=> (Lo,IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo) : Type 1)

We now have six subgoals to prove, the first of which deals with the input to the IF.
The second and third subgoals compute the THEN and ELSE branches respectively. As
stated earlier, both branches must be evaluated, because the result circuit is always used
to describe the IF at the next time step. Note, however, that the value output o1 does
not appear in the output. The fourth premise states that the chooser must be well-typed;
in this case it has type t . t is an as yet uninstantiated meta-variable. As we shall see
below, evaluating premise 1 forces t to become a tuple type. We also have to prove that
the type denotes in premise 6. Subgoal five expresses the constraint that we choose the
ELSE part of the IF; the result out of the input circuit must not match with the chooser.

We may now apply ReduceTuple to reduce the tuple in premise 1 to two subgoals.
Following this we apply ReduceConst to premises one to four:

> applyTacn [1,2,3,4] (doRule ReduceConst);

***** Level 4 *****

|- E (TyTuple (t1 ,t2 ))

[6] |- match (Hi, Hi) (Hi,Lo) == ff

|- (Hi, Hi) : TyTuple (t1 ,t2 )

[4] |- Lo : Type 1

[3] |- Hi : Type 1

[2] |- Lo : t2

[1] |- Hi : t1

--------------------

|- (env |- IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo

=> (Lo,IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo) : Type 1)

The tactical applyTacn l t applies tactic t to all premises in the list l. doRule converts



a rule into the tactic which applies the rule if it is applicable, and fails otherwise. tryRule,
on the other hand, is the identity tactic if the rule fails to apply. tryRules and doRules

are similar functions operating on lists of rules.
As mentioned earlier, the type of the chooser has been constrained to a less general

type TyTuple (t1 ,t2 ). Evaluating premises one and two will specialise it further to
TyTuple (Type 1,Type 1), as the type of Hi and Lo is Type 1. All the subgoals, except
[6], are now dealing with the static semantics, or typing of terms. It makes sense to deal
with the static and dynamic semantics simultaneously because they are both structural
semantics. Moreover, the dynamic semantics only evaluates well-typed expressions.

Using applyTacn [1,2,3,4] (doRule ReduceHi elseR ReduceLo) we discharge pre-
mises one to four. Using ReduceMatchTac, a tactic which rewrites expressions involving
match, we prove premise six. We also discharge the static typing of the chooser.

> applyTac (doRules[ReduceT,ReduceC,ReduceHi]);

***** Level 7 *****

|- E (TyTuple (Type 1,Type 1))

--------------------

|- (env |- IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo

=> (Lo,IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo) : Type 1)

> applyTac (doRules[ReduceTyTuple,ReduceType,ReduceSn,Reduce0]);

***** Level 8 *****

--------------------

|- (env |- IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo

=> (Lo,IF (Hi, Lo) MATCHES (Hi,Hi) THEN Hi ELSE Lo) : Type 1)

> val example1a = popGoal();

val example1a = ? : rule

Note that doRules [r1,r2] is a tactic which applies rule r1 and then applies r2 to all
resulting subgoals. Thus ReduceC and ReduceHi are applied to both subgoals resulting
from ReduceT. The theorem is saved as example1a so that we can apply this derivation
in one step in the future.

While this is very instructive, it becomes tedious very quickly to this sort of proof
by hand. Tactics may be used to great advantage in this sort of regular reasoning. The
whole previous example could have been done using one general purpose tactic:

val OpSemTac = (repeatT (nonTrivT (tryRules OpSemRules))) thenT

(tryT (theoremT ReduceMatchTac)) thenT

(tryT (theoremT ReduceTypeTac));

applyTac OpSemTac;

This tactic repeatedly applies one or more of the standard operational semantics rules
until none apply. It then applies ReduceMatchTac followed by ReduceTypeTac, to rewrite
any typing subgoals. These last two tactics are applied to a subgoal only if they discharge
it.

The circuit as it stands is not very useful, as it deals with only one particular input.
Moreover, we had to supply the output from the simulation at the start! We will now



quickly redo the example, but using meta-variables as output. These will be flexible, so
that they may be instantiated as we compute the output to a fixed answer. We will also
use an abbreviation for the AND gate. Unlike the abbreviations for Hi etc., it has an
argument. Abbreviations are syntactic functions at the meta-level in the proof system.
They are distinct from functions at the object level, such as nadd which we shall see later.

val Signal = Cons (0,1);

val Hi = Cons (1,1);

val Lo = Cons (2,1);

val AND#(e) = IF e MATCHES (Hi,Hi) THEN Hi ELSE Lo;

When a new goal is to be proven, all meta-variables are rigid; they cannot be (inadver-
tently) instantiated. In general this is what is required, because the result so proved is
then more general. Every operational semantics rule has meta-variables such as env ,
circ and t , which are unified with the corresponding expressions in the premise it is
applied to. Consider the use of rule ReduceIf below, for example. In this case we want
to specialise the meta-variables if required, so we make them flexible using the flex com-
mand. A pop-up menu shows the current subgoal, and one selects subterms by clicking on
them with a mouse. The flex command is then automatically generated by Lambda, so
that it may be included in proof scripts for later use. We will now unfold the abbreviation
for AND, and apply ReduceIf which is a third rule for the IF statement.

> apprl ANDU;

***** Level 3 *****

|- (env |- IF circ MATCHES (Hi,Hi) THEN Hi ELSE Lo =>

(out , IF h MATCHES (Hi,Hi) THEN Hi ELSE Lo : t )

--------------------

|- (env |- AND#(circ ) => (out ,AND#(h)) : t )

> apprl ReduceIf;

***** Level 4 *****

|- E t 1

|- T (C Hi,C Hi) : t 1

|- (env |- Lo => (o2 ,Lo) : t )

|- (env |- Hi => (o1 ,Hi) : t )

|- (env |- circ => (out ,h) : t 1)

--------------------

|- (env |- AND#(circ ) => (case match (Hi,Hi) out of

uu => bottom o1 | tt => o1 | ff => o2 ,AND#(h)) : t )

ReduceIf defers the computation of the output of the IF by delivering a symbolic an-

swer. In this case, however, we would like to have a concrete value answer rather than an
expression describing what happens in the most general case. After undoing everything
using undoAll() we prove the result we want by flexing type t and circuit newcirc ,
expanding all the abbreviations using applyTac (doRules[ANDU,HiU,LoU,SignalU]),
finally followed by applyTac OpSemTac. OpSemTac uses the rule ReduceIf’ rather than
ReduceIf, so that the required answer is obtained.



> applyTac OpSemTac;

***** Level 5 *****

|- out == (case match (Cons (1,1), Cons (1,1)) out 1 of

uu => bottom (Cons (1,1)) | tt => Cons (1,1) | ff => Cons (2,1))

|- (env |- circ => (out 1,h) : TyTuple (Type 1,Type 1))

--------------------

|- (env |- AND#(circ ) => (out ,AND#(h)) : Type 1)

> val ReduceAND = popGoal();

val ReduceAND = ? : rule

The abbreviations for Hi etc. have been expanded so that this derived rule ReduceAND

may be used in general contexts without any extra work. This derived rule may be
thought of as abbreviating the whole proof tree which was generated to prove this rule.
Derived rules may be used very effectively in a hierarchical manner. Simulations may be
speeded up by passing rules which reduce subcircuits such as AND gates or adders in one
step. An alternative approach, is to write a tactic with the same effect. A tactic would
actually replay or recreate the proof tree, which would be as slow as rerunning the proof.
The application of a derived rule, in contrast, is as fast as a primitive rule.

All of the computations we have shown so far have been within a single clock tick
or time step. The following example shows how a delayed AND gate may be simulated
during two time steps. At every time step the value at the head of the input stream is
put on top of the stack. Var 0 indicates the first value on the stack or environment env .
Delay (c,e) is a unit delay of expression e. Thus the circuit DELAY (Signal,AND#(Var

0)) is an AND gate which takes its input from the input stream, and whose output is
delayed by one time step.

> apprl ReduceSeqCons;

***** Level 3 *****

|- ([(Signal,Lo)], env |- circ1 => (outstream ,newcirc ))

|- ((Lo,Lo) :: env |- DELAY (Signal,AND#(Var 0)) => (o1 ,circ1 ) : t )

--------------------

|- ([(Lo,Lo), (Signal,Lo)], env |-

DELAY (Signal,AND#(Var 0)) => (o1 :: outstream ,newcirc ))

> apprl ReduceDelay;

***** Level 4 *****

|- ([(Signal,Lo)], env |- DELAY (out ,circ’ ) => (outstream ,newcirc ))

[2] |- Signal : t

[1] |- ((Lo,Lo) :: env |- AND#(Var 0) => (out ,circ’ ) : t )

--------------------

|- ([(Lo,Lo), (Signal,Lo)], env |-

DELAY (Signal,AND#(Var0)) => (Signal :: outstream ,newcirc ))

Note that the output from circuit is known even though the output from the AND has
not been computed yet. We reduce premise 1 using ReduceAND, and the second premise



using ReduceSignal.

> apprl ReduceSignal;

***** Level 7 *****

|- ([(Signal,Lo)], env |-

DELAY (Lo,AND#(Var 0)) => (outstream ,newcirc ))

--------------------

|- ([(Lo,Lo), (Signal,Lo)], env |-

DELAY (Signal,AND#(Var 0)) => (Signal :: outstream ,newcirc ))

We have now completed time zero, and can compute the next time step. Note that the
description of the delay now has state Lo, which was the output from the AND gate at
the previous time step. The second time step may be dealt with in exactly the same
manner, resulting in the following:

***** Level 10 *****

|- ([], env |- DELAY (Lo,AND#(Var 0)) => (outstream ,newcirc ))

--------------------

|- ([(Lo,Lo), (Signal,Lo)], env |-

DELAY (Signal,AND#(Var 0)) => (Signal :: Lo :: outstream ,newcirc ))

The final application of ReduceSeqNil closes the input stream. Note that only at this
point do we know what the final circuit looks like, in case we want to continue this
simulation.

> apprl ReduceSeqNil;

***** Level 11 *****

--------------------

|- ([(Lo,Lo), (Signal,Lo)], env |-

DELAY (Signal,AND#(Var 0)) => ([Signal,Lo],DELAY (Lo,AND#(Var 0))))

As in the previous example, we could have done all of this with the application of
a single tactic safeOpSemAllTac’ [ReduceAND]. A list of derived rules may be passed
into the tactic. This means that an AND gate, for example, is reduced using one derived
rule application, rather a series of primitive rules. This facilitates faster, hierarchical
simulation because a circuit does not need to be flattened out into individual gates to be
simulated. It is also easier to pinpoint errors in a circuit when it is simulated hierarchically
because boundaries of subcircuits are clearer when the subcomponents have not been
flattened out. One needs to open up a subcircuit only when it is found to be in error.

4.2 Adder circuits

One of the strengths of the embedding approach used here is that we can manipulate
circuit expressions just like any other term in the proof system. This allows us to write
functions operating on and delivering circuits. In this subsection we will describe two
implementations of a full adder, followed by an N bit adder generator. Formal circuit
generators were introduced by Brock et al. in [3, 4].



We will first show two implementations of a full adder. ADD1 is composed of two half
adders in the following manner:

val OR#(e) = IF e MATCHES (Lo,Lo) THEN Lo ELSE Hi;

val XOR#(e) = IF e MATCHES (Hi,Lo)|(Lo,Hi) THEN Hi ELSE Lo;

val HA#(e) = LET e IN (XOR#(Var 0), AND#(Var 0));

val ADD1#(e) = LET e (* ((x,y),c) *) IN

LET HA#((Var 0)[1]) IN

LET HA#(((Var 0)[1], (Var 1)[2])) IN

((Var 0)[1], (* sum *)

OR#(((Var 0)[2], (Var 1)[2]))); (* carry *)

The outermost LET is necessary, in case the input expression contains Vars. It also avoids
duplication of the input circuit by using a fan-out. For example, without this LET, the
second half adder in ADD1#(Var 0) would incorrectly access the first half adder as input.
We easily derive ReduceHA and ReduceADD1 using safeOpSemAllTac. In this example we
can see quite clearly how we use proof system capabilities to structure our circuits at the
object level. AND etc. are meta-level syntactic functions.

ADD2 is built directly from three AND gates, two OR gates and two XOR gates.

val ADD2#(e) = LET e IN (* ((x,y),c) *)

LET AND#(((Var 0)[1][2], (Var 0)[2])) IN (* bc *)

LET AND#(((Var 1)[1][1], (Var 1)[2])) IN (* ac *)

LET AND#((Var 2)[1]) IN (* ab *)

LET OR#((Var 2, OR#((Var 1,Var 0)))) IN

LET XOR#((Var 4)[2], XOR#((Var 4)[1])) IN

(Var 0,Var 1);

Most of the complexity is due to the destruction and construction of tuple wires.
These two adders behave identically on fully defined inputs. However, ADD2 may

be more defined than ADD1 on partially defined inputs, such as ((Hi,Signal), Hi).
The former outputs (Signal, Hi) while the latter results in (Signal, Signal) for the
(sum,carry) pair. For this input we cannot say anything about the sum, but we know
that the carry must be Hi. In the case of ADD1 the pessimism is due to non-optimal use
of the input; information is consumed piecewise by independent subcomponents. There
is no one bit adder implementation whose outputs are more defined than those of ADD2
for partially defined values.

> applyTac (safeOpSemAllTac’[ReduceADD2]);

***** Level 4 *****

--------------------

|- ([((Hi,Signal),Hi), ((Signal,Hi),Hi), ((Lo,Signal),Lo),

((Hi,Hi),Signal)], env |- ADD2#(Var 0) =>

([(Signal,Hi), (Signal,Hi), (Signal,Lo), (Signal,Hi)],ADD2#(Var 0)))

We will now define a N bit adder generating function which is parametrised on the
full adder subcomponent.



(* onebitadder: ((x,y),c) -> (s,c) *)

(* nadd: (((xN+1,(..,x0)),(yN+1,(..,y0))),c0) -> ((sN+1,(..,s0)),c) *)

fun nadd onebitadder (S 0) x = onebitadder x |

nadd onebitadder (S (S n)) x =

LET x IN (* (((xN+1,(..,x0)),(yN+1,(..,y0))),c0) *)

LET nadd onebitadder (S n)

(((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]) IN

LET onebitadder (((Var 1)[1][1][1], (Var 1)[1][2][1]),

(Var 0)[2]) IN

(((Var 0)[1], (Var 1)[1]), (* sum *)

(Var 0)[2]) (* carry *);

nadd is a partial function: there is no such a thing as a zero bit adder. A one bit
adder with input ((x0, y0), c0) uses the full adder component. A N + 1 bit adder with
input (((xN , x), (yN , y)), c0) uses an N bit adder with input ((x, y), c0) connected to a full
adder with input ((xN , yN), cN). As with the ADD1 circuit, virtually all of the complexity
is due to the composition of intermediate wires. It is more complicated than in the
‘paper version’ of picoella due to the de Bruijn encoding of variables. The derived rule
ReduceNADDSSn, dealing with N + 2 word size, is quite involved. Premise one evaluates
the input circuit; premise two the N +1 bit adder, and premise three the full adder. The
remaining premises deal with the static semantics.

|- E t1

|- o1 : t1

|- E (Type m2)

|- E t1 3

|- o2 2 : t1 3

[3] |- (CoTuple (o2 2,Cons (n3,m2)) :: o1 :: env |-

add (((Var 1)[1][1][1], (Var 1)[1][2][1]), (Var 0)[2])

=> (CoTuple (Cons (n2,m1),Cons (n1,m)),

add (((Var 1)[1][1][1], (Var 1)[1][2][1]), (Var 0)[2])) :

TyTuple (Type m1,Type m))

[2] |- (o1 :: env |-

nadd add (S n) ((((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]))

=> (CoTuple (o2 2,Cons (n3,m2)),

nadd add (S n) ((((Var 0)[1][1][2], (Var 0)[1][2][2]), (Var 0)[2]))) :

TyTuple (t1 3,Type m2))

[1] |- (env |- circ => (o1 ,circ’ ) : t1 )

--------------------

|- (env |- nadd add (S (S n)) circ =>

(CoTuple (CoTuple (Cons (n2,m1),o2 2),Cons (n1,m)),

nadd add (S (S n)) circ’ ) : TyTuple (TyTuple (Type m1,t1 3),Type m))

We see that the output of the N +1 bit adder is a tuple CoTuple (o2 2, Cons (n3,m2)).
Comparing this to the definition of nadd we see that o2 2 represents the partial sum
(sN , (.., s0)), and Cons (n3,m2) the carry cN+1. Decoding the inputs of the final N +
2nd bit adder add , we see that its input carry (Var 0)[2] accesses the output carry



Cons(n3,m2) from the N + 1 bit adder, as expected. The final result of the N + 2 bit
adder consists of (i) the concatenation of the sum bit of add (Cons(n2,m1)) concatenated
with the partial sum o2 2; and (ii) the carry bit Cons(n1,m) of add . The derived rule
ReduceNADD1 just unfolds the nadd definition to evaluate the full adder. Note that the
result circuit must be identical to the circuit we evaluate. This means that the adder is
not allowed to have any state.

|- (env |- add circ => (out ,add circ’ ) : t )

--------------------

|- (env |- nadd add 1 circ => (out ,nadd add 1 circ’ ) : t )

A four bit adder has been simulated, with ADD2 as the subcomponent. For example,
binary 1010 + 1101 + 1 = 11000, that is, a sum of 1000 and a high carry:

> applyTac (safeOpSemAllTac’[ReduceNADD4bit’]);

***** Level 4 *****

--------------------

|- ([(((Hi,(Lo,(Hi,Lo))), (Hi,(Hi,(Lo,Hi)))), Hi)], env |-

nadd (fn e => ADD2#(e)) 4 (Var 0)

=> ([((Hi,(Lo,(Lo,Lo))), Hi)], nadd (fn e => ADD2#(e)) 4 (Var 0)))

Note that ADD2 is a meta-level syntactic function, and must therefore be converted into
an object level function, using (fn e => ADD2#(e)).

In this section we see most clearly the increased power of our methodology over sym-
bolic simulation as it has been used by Bryant [5] for example. When we remarked that
mossym does not allow abstraction over circuits what we intended to convey was that it
does not allow the simulation of an N bit adder. Our approach allows more than this; we
can even simulate an N bit adder built using any one bit adder onebitadder. As long as
we know that the subcircuit onebitadder behaves like a one bit adder, we can simulate
any circuit in which it is used. We can simulate a circuit containing abstract hardware,
as long as we know what the behaviour of the subcomponent is. Let us consider an ALU,
containing an N bit adder. The N bit adder specification will usually be stated at a
higher level of abstraction, using natural numbers. The specification for the sum could
be bitsof (natof x + natof y) mod 2N . natof is a data abstraction function, and bitsof

its inverse. When we simulate the ALU, and arrive at the N bit adder subcomponent, it
makes sense to use the specification rather than the implementation. (This assumes we
have shown that the implementation specifies the specification.) Rather than simulating
the basic gates the adder is composed of, we compute the natural number expressions
stating the values sum and carry have. This is not only faster, also conceptually clearer.

4.3 Two Parity Checkers

Boulton et al. illustrate their approach to the verification of ella designs with a parity
checker [2]. It consists of two multiplexors, two delays and a NOT gate. PCHECK2 below
describes the same circuit as PARITY IMP in the cited paper.



val NOT g#(e) = IF e MATCHES Hi THEN Lo ELSE Hi;

val MUX#(e,b1,b2) = IF e MATCHES Hi THEN b1 ELSE b2;

val REG#(c,e) = DELAY (c,e);

val PCHECK2#(s1,s2,e) = LET e IN

LET INIT Signal REC

(* Use a LET to avoid duplication of register *)

LET REG# (s1,Var 0) IN

MUX# (REG# (s2, Hi),

MUX# (Var 2, NOT g#(Var 0), Var 0),

Hi) IN

Var 0;

We use NOT g because NOT is the truth value not operator in Lambda. It is worth noting
that the state of the parity checker is explicit in the abbreviation. The reason for this is
so that the abbreviation may be used in all possible states, and not just the initial state.

[5] |- ceq Signal (Cons (n1,1)) == false

|- Cons (n1,1) == (case match Hi (Cons (b,1)) of (* Outer MUX *)

uu => bottom o1 | tt => o1 | ff => Hi)

|- o1 == (case match Hi (Cons (n,1)) of (* Inner MUX *)

uu => bottom o1 1 | tt => o1 1 | ff => Cons (a,1))

|- o1 1 == (case match Hi (Cons (a,1)) of (* NOT *)

uu => bottom Lo | tt => Lo | ff => Hi)

|- (env |- circ => (Cons (n,1),h) : Type 1)

--------------------

|- (env |- PCHECK2#(Cons (a,1),Cons (b,1),circ ) =>

(Cons (n1,1),PCHECK2#(Cons (n1,1),Hi,h)) : Type 1)

The derived rule ReducePCHECK2 contains some points of interest. First note that only the
two multiplexors and the NOT gate are present as subgoals; both delays have disappeared.
As described in [2], the rôle of the innermost register is to output Lo at time zero, and
Hi ever after. This is evident from the conclusion of the rule below, where the state s2 is
always Hi after an evaluation. Also note that the output Cons(n1,1) is duplicated in the
first register, so that it can be used in the next time step, using the feedback. At time
zero, the values in the registers are both Lo. In fact, the value in the first delay at time
zero is irrelevant:

|- ([Cons (y,1)], env |- PCHECK2#(Cons (x,1),Lo,Var 0) =>

([Hi],PCHECK2#(Hi,Hi,Var 0)))

This derivation uses an arbitrary input Cons(y,1) and state in the first delay Cons(x,1).
The only constraint on these don’t care values is that they must have the right type. Note
that their possible value includes the undefined or don’t know value. This simulation shows
that the state of the new circuit is fully defined no matter what the input at time zero
is. In other words, the value of the input at time zero is ignored. This parity checker
outputs Hi at time t if there have been an even number of His in the input stream from
time one to time t inclusive.

An alternative parity checker is listed below.



val PCHECK1#(s,e) = LET e IN

LET INIT Signal REC

REG# (s, XOR# (Var 0, Var 1)) IN

Var 0;

The initial state must be Hi. PCHECK1 outputs Hi at time t+1 if there have been an even
number of His in the input stream from time zero to time t. The output at time zero is
Hi.

> applyTac (safeOpSemAllTac’[ReducePCHECK1]);

***** Level 4 *****

--------------------

|- ([Hi,Lo,Hi,Hi,Lo,Lo], env |- PCHECK1#(Hi,Var 0) =>

([Hi,Lo,Lo,Hi,Lo,Lo],PCHECK1#(Lo,Var 0)))

Using conventional verification techniques we proved that the PCHECK1 circuit does indeed
count the number of His in the input stream.

(* Number of v’s in the input stream from time 0 up to time t. *)

fun noof v input 0 = 0 |

noof v input (S t) = if input t = v then (noof v input t) + 1

else (noof v input t);

fun even n = n mod 2 = 0;

fun absinv true = Hi | absinv false = Lo;

fun state x y = absinv (even (noof Hi x y));

noof counts the number of vs in the input stream, even returns true if there have been
an even number of them, and absinv is the inverse data abstraction function, mapping
booleans to constants. state combines these three functions into one, to make the result
more readable.

|- forall t,l,e,input. input t == Hi \/ input t == Lo ->>

Reduce l (PCHECK1#(state input t,e t)) ==

(state input t, PCHECK1#(state input (S t),e (S t)))

In other words, assuming the input is either Hi or Lo at every time step, the output at
time t consists of two parts. The first value is Hi is there have been an even number
of His in the input stream. The second part states that the state of the new circuit is
given by the state function at time t + 1. As we discussed at the end of the previous
subsection, we can use this specification instead of using the circuit in simulations.

Although it was not shown in the last two examples, the semantics computes the
least fixed point of a LET REC. An iterative method is used, and the number of iterations
may vary to reach the fixed point. In the case of delayed feedbacks, however, it takes
at most one iteration. If the output is not undefined exactly one iteration is needed. In
the derived rules for PCHECK1 and PCHECK2 the assumption was made that no undefined
values were input to the circuit. (Premise [5] of rule ReducePCHECK2 states this. The
assumption is more explicit in the theorem above.) It follows from this assumption that
only defined values are output and hence only one iteration is needed. The current tactics
do not attempt to deal with recursion.



5 Conclusions

Simulation and verification are usually described as alternative, incompatible approaches.
This paper shows that by suitably embedding the operational semantics of a hdl in an
appropriate proof tool we are able to integrate simulation and verification within the same
framework. We believe the approach taken here is applicable to any hdl. The choice of
picoella and Lambda is not crucial to the discussion.

The strength of our approach is the ability to specify, implement, simulate and reason
about a circuit within a single framework. At any stage in this process we may use a
conventional hdl notation, the logic supported by the proof system, or a mix of the two.
Although the specification will often be expressed using logic, an algorithmic specification,
i.e. as a high level hdl program, may be useful. An algorithmic specification can also be
used to give a more operational intuition by executing it. Logic specifications (and im-
plementations) cannot be animated easily. The common relational hardware description
style, which uses existential quantification for hidden wires, is an example. Moreover,
structure and behaviour are not properly separated; the form of the behavioural de-
scription is used to indicate the intended structure of the circuit. Our approach strictly
separates structure and behaviour [9]. Behaviour is given to a purely structural term
through a formal embedded semantics, and properties of circuits are derived using this
semantics. The ability to reason about and manipulate structural expressions per se is
very useful. It facilitates interfacing with conventional design tools because they use
the same notation. For example, circuits designed using a proof system may be exported
directly to layout generators. Alternatively, hardware output by unverified hardware syn-
thesis tools can be validated using the proof system. Hardware may also be synthesised
formally using hardware generators such as nadd in section 4.2, first introduced by Brock
and Hunt in [3]. Formal synthesis [12], and refinement based approaches [7] fit well into
our framework. Dialog is a graphical synthesis package integrated with the Lambda

proof system. Using Dialog, it would be possible to synthesise formally verified hdl

descriptions without the need to explicitly use the underlying proof system. This could
be seen as a hdl interface to the proof system; the user does not need to interact with the
underlying proof system. We can also treat circuit optimisations formally. If two struc-
tural terms have equivalent behaviours, they may be substituted for one another in any
context. A given circuit could be optimised by (possibly context dependent) rewriting,
which is certainly possible in Lambda. Finally, we can use the embedded semantics to
simulate the structural terms. Both data and circuit descriptions may be meta-variables,
enabling powerful symbolic simulation. Partial implementations may be simulated by
using the specifications of the missing components. In our opinion the main advantage of
this approach is the possibility of using a conventional hdl in more formal setting. This
bridges the gap between hardware designers and verification engineers.

Future work includes the optimisation of tactics. Tactics must be made to deal with
recursion automatically if possible. It will also be helpful to make the use of the system
more user-friendly by providing a menu-based X window interface using Lambda’s built-
in browser. Finally, picoella was designed to exhibit the ideas outlined here and in [9].
A larger, more readable, subset of ella must be used for practical applications.
A longer version of this paper is available as LFCS report number ECS-LFCS-92-231.
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