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Abstract

This paper describes how a formal semantics for a computer hardware design

and description language may be embedded in a proof system� An abstraction of

ELLA
�� its formal structured operational semantics and the underlying semantic

model are introduced� The Lambda� proof system� the embedding of the semantics

and some results are discussed� Some examples are shown� and other approaches

are brie�y surveyed�

� Introduction

As circuits are getting larger and more complex� circuit design is becoming more di�cult�
The need to describe and document designs has led to the development of computer hard�
ware design and description languages �CHDDLs� such as ELLA �Com��	 and VHDL
�Ins

	� Using these languages� a circuit may be described at all stages of its design�
from the high level speci�cation down to the gate level description� Traditionally sim�
ulators have been used to test designs at various levels� It is now impossible to fully
test a design by simulation alone� Circuits are too large to simulate all possible input
combinations� In addition� if a circuit contains internal state the input history must be
taken into consideration� increasing the number of possible test cases dramatically� The
e�ectiveness of tools such as simulators must be improved if they are to remain useful�
Symbolic simulators such as MOSSYM �Bry
	 allow simulation at a higher level� redu�
cing the number of test vectors� Rather than dealing with individual values� variables
and formulae� possibly representing more than one value� are used� The major limitation
of all conventional simulators is that they can only deal with �xed circuits� We would
like to verify general designs such as N bit adders� rather than test each instantiation of
a design� This applies not only to parametrised designs� but also to simple components�
Rather than re�testing these in every context� it makes more sense to establish the condi�
tions under which they are known to function correctly� Thus verifying a design requires
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checking functional correctness and validating the contexts in which the components are
used� To reason about circuits it is useful to have objects representing them� This allows
variables of type circuit� which facilitates a re�nement�based approach to design �FM
�	�
This contrasts with most veri�cation approaches which describe a circuit through its
relational or functional behaviour� Meaning must be ascribed to circuit objects if we
want to reason about their behaviour� A formal semantics is therefore necessary�

This paper explores the embedding of a fragment of the CHDDL ELLA in the
Lambda proof system� The next section describes the picoELLA language we will be
working with� A formal semantics is provided in section �� Section � brie�y introduces
the Lambda proof system� before discussing the embedding of picoELLA in section �
Section � describes some small examples� Related work is discussed in section �� Finally
we discuss future work and conclusions�

� picoELLA

In order to reason about circuit descriptions in a CHDDL� the CHDDL must have a
formal basis� We have written a formal structured operational semantics for picoELLA�
a subset of ELLA encompassing its salient features �Goo��b	� ELLA was chosen because
of its elegant data and timing model� Here we describe picoELLA informally� its formal
semantics will appear in the next section�

picoELLA corresponds to the functional subset of ELLA� Full ELLA may be
translated into picoELLA� It does not contain functions� so that every program is a
single expression� Functions may be introduced at a higher level in the proof system�
picoELLA contains the following constructs� type de�nitions� local declarations� re�
cursive declarations� constants� tuples� indexing� multiplexors and delays� Each of these
will be described brie�y� followed by an example at the end of this section�

Type de�nitions are used to de�ne the values that a signal may have� Enumerated
types de�ne an arbitrary ��nite� number of distinct constructors� such as

TYPE bool � true � false IN

TYPE signal � hi � lo � x � z IN expr

Tuple types introduce signals with components made up from previously de�ned types�

TYPE twobool � bool � bool IN expr

Local declarations allow signals to be given an explicit name� This aids the struc�
turing of circuit descriptions� and allows fan�out of signals�� To be able to deal with
feedback� recursive declarations are introduced� For example� the following expression
describes an alternating signal hi� lo� hi � � � changing at every time tick�

LET REC out � DELAY �hi� IF out MATCHES hi THEN lo ELSE hi� IN out

A constant is a constructor �from an enumerated type de�nition�� a bottom value�
or a tuple containing constants� Associated with every type is a bottom value �type� It
is declared implicitly� and represents the unde�ned or �don�t know� value of that type�
The bottom value is used to introduce a data ordering v on constants of the same type�
�type is less de�ned than every other value� Constructors are less than or equal to
themselves� but incomparable to other constructors� Thus v is a �at data order� and is

�We will assume throughout this paper that an unlimited fan�out is permitted� although it is possible

to limit fan�out�
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extended component�wise to deal with tuples� for example� �hi��signal� v �hi�lo��
As we shall see in the next section� the ordering v is crucial to the semantic model�

Tuples and indexing behave as usual� for example ��x�y���	� �x�y��
	� is equal
to �x�y�� Strictly speaking indexing is not required� but it will simplify matters when
combining expressions at a meta�level�

Multiplexors are at the basis of programs� they are used to describe a full range
of applications� from basic gates to sophisticated features such as bus arbiters �Com
�	
Section ����� For example� an AND gate may be described as follows�
IF expr MATCHES �true�true� THEN true ELSE false

Another� equivalent� description is
IF expr MATCHES �false�bool� � �bool�false� THEN false ELSE true

The pattern between the MATCHES and THEN is called a chooser� bool is a wild card
matching every value of type bool� The bar �j� denotes disjunction� a value matches
ch�ch� if it matches one or both of ch and ch�� A tuple represents pairing� it matches if
both components match� Only de�ned values may be used in choosers� one is not allowed
to check for the bottom value� The way in which this matching process is de�ned for
bottom values is important� There are three possibilities when matching a value with a
chooser� �i� The value and the chooser give a de�nite match� For example� true matches
true�false� �ii� The value and the chooser give a de�nite no�match� �hi�lo� does not
match �lo�lo�� �iii� Finally neither a match nor a no�match may occur� Consider either
version of the AND gate with input ��bool�true�� If the unknown value turned out
to be true the output would be true� On the other hand� if it turned out to be false

the output would be false� The output of �bool therefore re�ects the intuition that we
cannot give a de�nite answer�

The delay is the �nal construct in picoELLA� It introduces a discrete linear time
starting at time zero� DELAY�ct�e� denotes a unit delay with the output of circuit e as
its input� DELAY�ct�e� outputs the result of e one time step after it has been computed�
The output at this time step is the constant ct� At time t� � the new value ct�� in the
delay is the output of e at time t� The state of the delay �i�e� its contents� are explicit in
its description�� This is in contrast to the more common use of a state� which remembers
the values of delays from one time step to the next� Embedding the state in the circuit
description forces us to evaluate a new program at every time step� The result of an
evaluation consists therefore not only of the output signal of the program at that time
step but also the description of the program for the next time step�

An example of picoELLA� which we will refer to throughout this document is a half
adder� which delivers its output after one time step�

LET s � IF �x�y� MATCHES �true�false���false�true� THEN true ELSE false

IN

LET c � IF �x�y� MATCHES �true�true� THEN true ELSE false

IN

DELAY � �twobool� �s�c� �

The �rst LET computes the sum� the second the carry� �twobool is equivalent to
��bool��bool�� We assume that true� false and twobool have been de�ned as above�

�In ELLA the value in a delay description indicates not the state� but its output at time zero only�
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� PicoELLA Semantics

The formal semantics of picoELLA takes the form of a structured operational semantics
�Plo
�� Goo��b	� We have written a static semantics expressing which programs are well
typed for picoELLA� It will not be discussed in this section� It su�ces to say that
typing is �intuitively obvious�� The dynamic semantics evaluates a well typed program
in a given environment� There are one or more rules for every construct in the language�
expressing their behaviour� There are a total of �
 rules for the �� constructs in the
language� The dynamic semantics acts on a stream of values and a program� The result
of a semantic rule at each time step is the new circuit description and a constant� As
described in the previous section� rather than using state to remember values in the
delays� the circuit description itself is altered� This allows us to use environments �� in
the rules below� rather than states�

At every time step the element at the head of the input stream is removed from the
stream and added to the initial environment� A program has therefore exactly one input
and one output� This is not a limitation as these values may be tuples� representing
more than one input or output signal� For a completed program the initial environment
will be empty� but partial programs may have �unconnected wires�� These may be set to
a constant value during simulations by providing a non empty initial environment� This
is an important feature� as it allows us to reason about program fragments in general
contexts� We could show for example� that a given circuit functions correctly using
several timing disciplines�

Let the initial program and input stream be e� and � i�� i�� � � � � iN � respectively�
The result of an evaluation of program et at time t with input it consists of a tuple
�ot� et��� representing the output signal of the circuit� and a description of the circuit
at the next time step t � �� Time is explicit only in three rules dealing with input� the
remainder of the dynamic semantics is independent of time� The rule for LET expresses
that expr is evaluated in the environment �� resulting from evaluating the declaration
decl� The result of the LET consists of the output of expr at the current time� and the
circuit description at the next time step� This new circuit is a LET built up from the new
declaration decl� and the new expression expr��

� � decl � ��� decl� �� � expr� v� expr�

� � LET decl IN expr� v� LET decl� IN expr�
���

The following rule shows how a non recursive declaration is evaluated�

� � expr � v� expr�

� � name � expr � �f�name� v�g� name � expr�
���

�f�name� v�g is the environment which contains value v for name name� and is identical
to � otherwise� The next rule shows clearly that the output of the delay is the constant
value contained within it� The new delay contains the output v from expr at the current
time step� The bijective function valueof� Expr � Value converts a constant expression
to the corresponding constant value�

� � expr � v� expr�

� � DELAY �c� expr�� valueof�c�� DELAY �valueof���v�� expr��
���

The following rule will clarify the informal description of the multiplexor� or IF state�
ment� Firstly� this rule evaluates all sub�expressions of the IF� It is strict because every
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branch� whether its answer is used or not� must compute its circuit description for the
next time step� The three cases outlined previously are represented in Kleene�s ternary
logic as tt �a match�� ff �a no�match� and �Bool �neither a match nor a no�match��

� � expr� � v�� expr
�

� � � expr� � v�� expr
�

� � � expr� � v�� expr
�

�

� � IF expr� MATCHES chooser THEN expr� ELSE expr�
� v� IF expr�� MATCHES chooser THEN expr�� ELSE expr��

���
Where type is the type of expr� and expr� in�

v �

���
��

v� match�v�� chooser� � tt

v� match�v�� chooser� � ff

�type match�v�� chooser� � �Bool

We may prove that the match function is monotone in its second argument� i�e� if the
value of an input becomes more de�ned then the output becomes more de�ned� To be
more precise�

� �ch� c� d� c v d� match ch c v� match ch d ��

v is the data ordering de�ned in the previous section� v� is a similar data ordering on
tt� ff and �Bool � The reason for forbidding the use of bottom values �type in choosers
is that it would allow non�monotone circuit descriptions�

The LET REC operator is used to describe feedback� which means that we have to
use the output value before we have computed it� The dynamic semantics computes the
least �xed point of the circuit output� Using an iterative method� this guarantees that
every circuit will return a sensible answer in a �nite number of steps� This is particularly
important if a circuit could oscillate� Consider the alternating circuit of page � without

the delay�
LET REC out � IF out MATCHES hi THEN lo ELSE hi IN out

If the value on the out wire happened to be hi the inverter would output lo� This
means that its input changes to lo� Hence its output changes back to hi� This circuit
is therefore unstable for output hi and lo�� However� the circuit is stable for �signal�
it is the least �xed point of this circuit� It is �xed� i�e� it does not oscillate� and it is the
least because �signal is the smallest value of type signal�

To prove that the dynamic semantics computes the least �xed point we use the
Knaster�Tarski theorem� The theorem states that the least �xed point of a continuous
function f for some complete partial order is equal to the least upper bound of the
set of all iterative applications of f to the bottom element � of the CPO� i�e� the set
f�� f���� f�f����� � � �g� It has been shown that the the data ordering v is a CPO� and
that the semantics is monotone and continuous�

As an example consider the half adder

LET s � IF �x�y� MATCHES �true�false���false�true� THEN true ELSE false

IN

LET c � IF �x�y� MATCHES �true�true� THEN true ELSE false

IN

DELAY � �twobool� �s�c� �

�Actually� it is also unstable for the remaining constructors x and z�





Some indication how this circuit behaves is shown in the following table� Note that the
value in the delay is the value computed by the XOR and AND circuits at the preceding
time step�

time input program output

� �true�false� LET � � � DELAY ��twobool��s�c�� ��bool��bool�

� �true�true� LET � � � DELAY ��true�false���s�c�� �true�false�

� �false�false� LET � � � DELAY ��false�true���s�c�� �false�true�

� � � � LET � � � DELAY ��false�false���s�c�� �false�false�

� Lambda

This section brie�y describes the Lambda proof system �FFM��	� and its relevant fea�
tures� The Lambda proof system is an implementation of a polymorphic constructive
higher order logic of partial terms� Polymorphism allows functions to operate on objects
of more than one type� The logic is constructive� which implies that we do not have the
law of the excluded middle or a strong axiom of choice� This contrasts with a classical
system such as HOL� in which Hilbert�s � operator is used for descriptions� Higher
order logic means that we can reason about functions� functions of functions etc� For
example� signals are usually represented as functions from time to values� and circuits are
described in terms of their e�ect on signals� To reason about partial terms an existence
predicate E� weak equality or equivalence ���� and strong equality �� are included� The
system is implemented in ML which is also used as the command language �HMT
�	�

Lambda allows the user to declare new data types and functions� which may then
be used in rules� theorems etc� Lambda�s data type and function de�nitions are a large
subset of standard ML� For example�

datatype bool � true � false� fun not true � false � not false � true�

is part of the built�in de�nitions of the bool data type� Lambda returns a number of
rules and theorems which axiomatise this data type and function� For example� rules
about a data type are� existence of constructors� �in�equality rules for the constructors
and an induction rule for the type�

������ bool�ind ������


 G �� H �� Pbool��false�

� G �� H �� Pbool��true�

��������������������

E w � G �� H �� Pbool��w�

This induction rule allows us to derive things like �x � bool� x �� true � x �� false�
For functions� rules include existence of the function and its partial applications� and
rules which allow rewriting� not true is equivalent to false for example�

������ not�eq�� ������

��������������������

G �� H �� not true ��� false

In addition to rules� Lambda has tactics� Using tactics a number of rules may be
applied in succession � in any order � repeatedly � only if applicable etc� A sophisticated
rewrite system is also available� A number of libraries with rules and tactics about lists�
booleans� words� naturals and integers are supplied with Lambda�
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� Embedding picoELLA in Lambda

This section describes how the greater part of the static and dynamic semantics of
picoELLA has been embedded in the Lambda proof system� We will encode the types
and functions used in the semantics using the ML de�nitions mechanism explained in
the previous section�

The �rst thing we need are constants�
datatype const � Cons of natural � natural � CoTuple of const � const�

Cons�i�t� encodes the ith constructor of type t� By convention Cons���t� represents �t�
A constant is therefore a constructor or bottom value� or a tuple containing constants�
The structural induction rule the system returns for constants is�


 E r�� � E r� � G �� P��r��� � P��r�� � H �� P��CoTuple �r���r���

� E r�� � E r
� � G �� H �� P��Cons �r���r
���

��������������������

E w � G �� H �� P��w�

To prove a property P of all constants w two subgoals must be proved� �i� assuming that
naturals r�� and r
� exist� prove the base case Cons� �ii� assuming that P holds for
constants r�� and r�� prove the inductive step for CoTuple� In this rule� the hypotheses
left of the G �known as the G�list� are conventionally existence hypotheses� Those between
the slashes and H are the remaining hypotheses�

To encode the matching process for the IF construct we de�ne

datatype choosers � C of const

� B of choosers � choosers

� T of choosers � choosers�

fun match �C c� c� � � � ��

match �B �b�c�� a � or� �match b a� �match c a� �

match �T �a�� b��� �CoTuple �a�b�� � and� �match a� a� �match b� b��

Thus choosers are either constants� bars� or tuples� As described on page �� the bar
corresponds to disjunction� and tuples to pairing� and� and or� are part of a general
purpose three valued boolean logic library� speci�cally written for this project� The
description for matching one constant with another has been omitted here� because it
would obscure the de�nition� Note that match is a partial function� the result of match
�T � � �� �Cons � � �� is not de�ned� The function is total in the case where the types of
the chooser and constant are equal� The de�nitions for typeOfChoosers� typeOfConst�
and the type tpe representing types are straightforward� We are now in a position to
re�prove the monotonicity of match �equation �� but now within Lambda�

G �� H �� forall ch�c�d� le c d �� true �n
typeOfChoosers ch �� �typeOfConst c� true� �n

typeOfChoosers ch �� �typeOfConst d� true� ���

le� �match ch c� �match ch d� �� true

The type of circuits is de�ned as follows�
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datatype expr � Const of const

� Tuple of expr � expr

� Let of expr � expr

� Var of natural

� Delay of const � expr

� If of expr � expr � expr � choosers

� Index� of expr

� Index
 of expr�

Note that the LET REC and TYPE constructors are absent� Work is in progress to add
the LET REC operator� To embed the LET operator a de Bruijn encoding of lambda ab�
stractions was used �dB��	� The bound variables of lambda expressions are encoded as
natural numbers indicating the distance �measured in intervening lambdas� away from
the de�ning lambda� Thus �x��y��x� �x� y�� a b would be encoded as ����� ��� ��� a b� In
picoELLA this corresponds to encoding LET x � a IN LET y � b IN �x��x�y�� by
Let �a� Let �b� Tuple �Var �� Tuple �Var �� Var ������ This encoding was ne�
cessary because a formal description of names of picoELLA had to be found in Lambda�

Finally� the dynamic semantics can be de�ned�

fun Reduce l �Delay �c�e�� � �c� Delay �Reduce l e�� �

Reduce l �Let �e�e��� �

let val �c� f� � Reduce l e

val �c�� f�� � Reduce �cl� e�

in

�c�� Let �f�f���

end �

Reduce l �Var n� � elem l n �

Reduce l �If �e�e��e���ch�� �

let val �c�d� � Reduce l e

val �c��d�� � Reduce l e�

val �c���d��� � Reduce l e��

in

� case match ch c of

tt �� c� �

ff �� c�� �

uu �� bottom c��

If �d�d��d���ch� �

end � � � ��

This de�nition re�ects the semantic rules at page �� Consider the clause for a delay� The
output at this time step is the value c� which was stored in the delay� The new circuit
is Delay �c��e�� where c� is the output from the circuit e at this time step� and e� is
the description of circuit e at the next time step�

The LET statement reduces the de�ning expression� and pushes the value result on
the stack �i�e� stores it in the environment�� Evaluating a name corresponds to a lookup
in the environment � in the dynamic semantics� and a lookup in the stack l in the
embedding�

The IF construct evaluates all of its sub�expressions� It then returns �i� the result
of the �rst branch �if we have a de�nite match � tt or tt�� or �ii� the result of the






second branch �if we have a de�nite no�match � ff or ff�� or �iii� a bottom value of the
appropriate type �if we have neither a de�nite match nor a de�nite no�match� �Bool or
uu�� As in rule ���� the IF is strict�

We may now prove properties which we would like to hold for the semantics� One
such property is the monotonicity of the reduction function� By extending the data
ordering on constants v to lists vl� the following theorem has been proved�

� �l� l�� e� welltyped � l vl l
� � �c� f� c�� f �� Reduce l e �� �c� f��

Reduce l� e �� �c�� f �� � c v c�
���

welltyped stands for a number of properties� which we will see below� Consider the
program consisting of a single delay� DELAY��bool�Var ��� If l �� ��bool	 and l�

�� �false	� then ��� tells us that �bool v �bool� At the next time step� however� we
cannot use the theorem because we now have two distinct circuits �DELAY��bool�Var ��

and DELAY�false�Var �� respectively�� We introduce an ordering on programs vp� and
a predicate �shape determining when two circuits have �the same shape�� e �shape e

��
e vp e

� indicates that e and e� are identical� except that constants in e are less than or
equal to those in e�� Thus DELAY ��bool� V ar �� vp DELAY �false� V ar ��� Now we
can state a more general monotonicity theorem�

G �� H �� forall l�l��e�e��t�

lle l l� �� true �n

ple e e� �� true �n
shapeEq e e� �� true �n

�map typeOfConst l� �� �map typeOfConst l�� �n
typeOfExpr �map typeOfConst l� e �� �t� true� ���

exists c�f�c��f��

Reduce l e �� �c� f� �n

Reduce l� e� �� �c�� f�� �n
le c c� �� true �n

ple f f� �� true �n
shapeEq f f� �� true �n
shapeEq e f �� true �n

typeOfConst c �� t �n
typeOfConst c� �� t

It states that for all environments l and l�� circuit expressions e and e�� and types t�
if l vl l

� � e vp e� � e �shape e� and environments l and l� have the same type and
circuit e is well formed in l interpreted as a type environment� the following properties
hold� �i� Reduce l e and Reduce l e� exist �i�e� the semantics terminates within a
�nite number of steps� and are equal to �c�f� and �c��f�� respectively� �ii� Reduce is
monotone in its �rst and second arguments� and �iii� Reduce preserves shape equality�
well formedness and types� In other words� if we start with any well typed circuit and
evaluate it in a number of di�erent environments then all the resulting circuits will have
the same shape� will be well typed and will be ordered as the environments�

� Worked Examples

This section shows how Lambda may be used to manipulate circuits� We show how
applications of a tactic compute the normal form of picoELLA circuit expressions� In
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other words� a symbolic simulation is performed� The example also illustrates the use of
Lambda�s abbreviations and functions to augment picoELLA�

Consider the following de�nitions�

val unknown � Cons������

val hi � Cons������

val lo � Cons�
����

val OR��x� � If �x� Const lo� Const hi� T �C lo� C lo���

val AND��x� � If �x� Const hi� Const lo� T �C hi� C hi���

val XOR��x� � If �x� Const lo� Const hi�

B �T �C hi� C hi�� T �C lo� C lo����

val HA��x� � Let �x� Tuple �XOR��Var ��� AND��Var �����

fun adder x y c � Let �Tuple �Tuple �x� y�� c��

Let �HA��Tuple �Index� �Index� �Var ���� ��x��

Index
 �Index� �Var ������ ��y��

Let �HA��Tuple �Index� �Var ��� Index
 �Var ����c�����

Tuple � Index� �Var ���

OR��Tuple �Index
 �Var ���

Index
 �Var ���������

hi� lo� AND etc� are abbreviations which may or may not have arguments� Abbreviations
are constant syntactic functions with no free variables� The full�adder adder uses a func�
tion instead of an abbreviation� Note that we are using Lambda�s de�nition mechanism
to structure picoELLA terms� These de�nitions may be loaded into Lambda using
val � pe��r� � � useLambda pe �definitions��

pe� is a new parser environment� r� are the rules characterising the de�nitions� Parser
environments ensure that new de�nitions are known to the parser� and are printed out
correctly�

The half adder HA has one argument� which is a tuple� It may be interpreted as a
pair of input wires� Similarly its output is a tuple consisting of a �sum�carry� pair� Any
function using the half adder� must select the appropriate components of the half adder�s
result� The Let is used to explicitly name all inputs to the function �which may be large
expressions� so that these are computed only once� after which the result is distributed
by using a fan�out� In the case of the full�adder� the Let is necessary to ensure the
correct o�set for any Var i inputs� x and y are added �rst� followed by the addition
of the partial sum and c� The �nal result is the disjunction of the two carries �the
second components of the half adders�� and the sum of the second component� Without
the indexing operators it would not have been possible to partition this description
into subcomponents� As described in section �� �unconnected wires� are represented by
accesses to the environment� This can be expressed in the following way�

Reduce �hi hi lo l� adder �Var �� �Var �� �Var 
� ��

�output� adder �Var �� �Var �� �Var 
��

The adder instantiation uses the top three elements of the environment� with the Var i

arguments� The remaining environment l is irrelevant� If we use the adder in a larger
circuit� it may be used in di�erent contexts �i�e� l will be instantiated with di�erent
environments� as long as the top three components are there �and are of the right type��
This term also asserts that the adder does not change over time� and therefore has no
internal state� The circuit description for the next time step is adder �Var �� �Var ��
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�Var 
�� which is also the current circuit�
We may now prove properties about these circuits� for example�

����� Level � Premise � �����

� x �� hi n� x �� lo n� x �� unknown


 input �� CoTuple �x�lo�

� halfadder �� HA��Var ��

�� Reduce �input	 halfadder �� �CoTuple �sum�carry��next halfadder�

��������������������

G �� x �� hi n� x �� lo n� x �� unknown �

input �� CoTuple �x�lo� � halfadder �� HA��Var �� � H

�� Reduce �input	 halfadder �� �CoTuple �sum�carry��next halfadder�

After removing the abbreviations we apply the tactic ReduceAllTac� which reduces
expressions involving Reduce to a normal form� After the re�introduction of abbreviations
the result is�

����� Level � Premise � �����

� input �� CoTuple �x�lo�


 halfadder �� HA��Var ��

�� sum �� x �n carry �� lo �n next halfadder �� halfadder

��������������������

G �� x �� hi n� x �� lo n� x �� unknown �

input �� CoTuple �x�lo� � halfadder �� HA��Var �� � H

�� Reduce �input	 halfadder �� �CoTuple �sum�carry��next halfadder�

This proof takes seven steps� each of which was a straightforward application of a tactic�
Note that we have not just simulated the circuit� we have established that with a lo

carry input� the sum is identical to the other input� even for the �don�t know� value�
A speci�cation for the half adder circuit could be stated as follows

val HA SPEC��x�y�sum�car� � sum �� �x�y� mod 
 �n car �� �x�y� div 
�

fun abs �Cons������ �� hi �� � � � abs �Cons�
���� �� lo �� � ��

Using the abstraction function abs� we may then prove that the half adder implement�
ation satis�es the speci�cation� Alternatively� we may design a circuit using re�nement
by starting with the rule��

����� Level � Premise � �����

E impl � E x � E y � E s � E c � G ��

Reduce �CoTuple�x�y�	 impl �� �CoTuple�s�c��impl� � H

�� HA SPEC��abs x� abs y� abs s� abs c�

��������������������

E impl � E x � E y � E s � E c � G ��

Reduce �CoTuple�x�y�	 impl �� �CoTuple�s�c��impl� � H

�� HA SPEC��abs x� abs y� abs s� abs c�

We may then split impl into two circuits� one to compute the sum and one to compute
the carry�

�Some typing constraints have been left out for clarity�
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����� Level n Premise � �����

E sumc � E x � E y � E s � G ��

Reduce �CoTuple�x�y�	 sumc �� �s�sumc� � H

�� �abs x���abs y� mod 
 �� abs s

���� Level n Premise 
 �����

E carc � E x � E y � E c � G ��

Reduce �CoTuple�x�y�	 carc �� �c�carc� � H

�� �abs x���abs y� div 
 �� abs c

��������������������

E �Tuple�sumc�carc�� � E x � E y � E s � E c � G ��

Reduce �CoTuple�x�y�	 �Tuple�sumc�carc�� ��

�CoTuple�s�c���Tuple�sumc�carc�� � � H

�� HA SPEC��abs x� abs y� abs s� abs c�

This process may then be repeated for the sumc and carc subcircuits until a complete
implementation has been found�

To show the power of having explicit circuit descriptions consider the following �sim�
pli�ed� hardware generating function�

fun nadder � x y c � adder x y c �

nadder �S �S n�� �Tuple �x�x��� �Tuple �y�y��� c �

Let �nadder �S n� x� y� c�

Let �adder x y �Index
 �Var ����

Tuple �Tuple �Index� �Var ��� Index� �Var ����

Index
 �Var ������

It returns a description for an N bit adder for arbitrary N � �� A one bit adder is the
full�adder described above� An N�� bit adder is an N bit adder followed by a full�adder
which adds the most signi�cant bits and the carry from the N bit adder� The �nal result
is a nested tuple
Tuple � Tuple �msb� Tuple �� � �� lsb�� � ��� carry�

where msb and lsb are the most and least signi�cant bits respectively�

� Related Work

In �BGM��	 Barringer et al� describe a language akin to picoELLA� Their Logic�Delay
language is also an abstraction from ELLA� The data values are either true or false�
There are no tuples� Their CASE statement corresponds to picoELLA�s IF expr MATCHES

true THEN expr� ELSE expr��� The language also has a stable delay of arbitrary
length� Rather than including explicit declarations� a program is a set of de�nitions�
which may contains loops� Thus fan�out and feedback loops are permitted�

The semantic model uses ��nite� histories to save the internal state of delays� At
every clock tick all declarations are evaluated simultaneously until a stable solution has
been found� An interesting di�erence in the treatment of unde�ned values comes to light
in one of the delay rules� It uses a negative judgement 	 � to detect unstable signals�

h 	 �t rhs�� � h 	 �t rhs�� �

h �t rhs���
���

This rule expresses that if rhs does not evaluate to either � or � using history h� it
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evaluates to � ��bool�� Unde�ned elements can arise either from a delay whose input
has not remained stable for a su�ciently long interval� or from an unstable loop �c�f� the
alternating circuit on page �� A rule similar to the one just discussed detects unstable
circuits� Informally� it states that the output of the circuit is unde�ned due to instability
if after the circuit reaches a state h�� from the initial state h�� there exists a non empty
sequence of states h��� � � � � h��� That is� the evaluation is stuck in a loop� Both of these
rules could be embedded in a way similar to picoELLA� The second rule would have to
keep track of all previous states� and check for a circularity at each step� It is not clear
however� how to use these rules within a constructive proof system�

In �BH
�	 Brock and Hunt use the Boyer�Moore theorem prover to encode a circuit
type� The Boyer�Moore system implements a quanti�er free �rst order predicate logic
with equality� Circuits are encoded as constants in the logic� and are given a mean�
ing using interpreters� A well formedness predicate is used to recognise valid circuit
descriptions� Circuit descriptions resemble Lisp� Brock and Hunt demonstrate circuit
generating functions such as N bit adders which are also veri�ed� A severe drawback to
their approach is that circuit descriptions are restricted to combinatorial circuits with
no feedback� This allows the interpreters and well formedness predicates to be relatively
simple� The complexity of the picoELLA semantics is due solely to these features�

Boulton et al� have implemented a behaviour extraction function �BGHvT��	 in the
HOL proof system� It maps ELLA descriptions from outside the proof system onto
�classical� higher order logic formulae� A large functional subset of ELLA� including
functions� is thereby given a semantics� However� the lack of a circuit type prevents
results about general or partially instantiated circuits to be proved�

A behaviour extraction function maps a circuit onto a formula describing its meaning�
A problem with general behaviour functions is that they do not reside in the proof system�
preventing a formal veri�cation� The Cambridge system� however� counters this problem
by making the result of the behaviour function as close to the original ELLA as possible�
The model within HOL is at the same level of abstraction as the original ELLA� Ideally
this high level embedded semantics would correspond to a formal semantics outside the
proof system� as is the case for picoELLA� �Goo��a	 contains a formal semantics for
a superset of the ELLA subset used by Boulton� Whether this semantics agrees with
their embedded semantics is not clear�

In contrast� an embedded operational semantics can be reasoned about formally� We
can thus gain con�dence in the semantics by formally proving desirable properties� For
picoELLA� the correspondence between �paper� and embedded semantics is very close�
again increasing our con�dence in the correctness of the embedding �with respect to
the �paper� semantics�� picoELLA�s semantics works at a lower level� by explicitly
embedding the �x point model� A �ne grained semantic model allows more detailed
results to be proved about the language� Also� by embedding a much smaller subset of
ELLA� it is easier to maintain a consistent system� The remainder of the language can
later be given a semantics in terms of the embedded subset� ELLA descriptions outside
the proof system may then be mapped onto syntactically equivalent proof system term�
which have a formal semantics by virtue of the embedded operational semantics�
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� Future Work and Conclusions

Two short terms goals are the embedding of the LET REC construct� and the completion
of a number of normal form results for choosers� Proving the correctness of the �x point
result will be challenging� The implementation of a pretty printing system� to present
picoELLA expressions in a more readable form� will make the systemmore user friendly�
A number of tactics and rules to perform common operations with a minimum of e�ort
would be very useful� In addition the semantics should be integrated with Lambda�s
window based browser facility�

As mentioned in the previous section the remainder of ELLA can� in principle� be
given a derived semantics� This may be achieved by encoding a second circuit type
encompassing the new constructs� and then formally mapping these constructs onto
picoELLA� Also� a behaviour function could be derived by proving a characterisation
of every construct� An informal function can then map every construct onto the relevant
property�

The embedding of the state of delays in the circuit description simpli�es the se�
mantics� but complicates reasoning about general circuits� It would be very helpful if
a general method for dealing with delays could be found� Combining picoELLA with
various design strategies� such as design for correctness� formal system design �FM
�	
and transformational design �Bus��	 may be possible� Hardware generating functions�
such as the N bit adder generator� open up the exciting prospect of formally veri�ed
hardware generators�

The e�ciency aspects of the operational semantics will have to be addressed at some
point� Brute force methods do not work well even on the small examples shown above�
An incremental approach to veri�cation has so far been faster� In addition� it allows the
re�use and structuring of designs and proofs� which will be crucial for circuits of medium
to large size� Finally� a number of larger case studies need to be performed to see how
the design activity is improved� speeded up� or otherwise�

Formal semantics for CHDDLs will be increasingly important as the need to verify
circuit descriptions and designs will become increasingly important� This research is a
�rst step towards providing systems which will allow designers to create fully veri�ed
circuits� These systems may be hybrid simulator�theorem provers or totally formal�
So far very little work has been done about either formalising CHDDLs or the use of
CHDDLs in conjunction with� or within proof systems�
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